Advertisements
Advertisements
Question
From the sum of 4 + 3x and 5 - 4x + 2x2, subtract the sum of 3x2 - 5x and -x2 + 2x + 5.
Solution
(4 + 3x) + (5 - 4x + 2x2) = 4 + 3x + 5 - 4x + 2x2
= 3x - 4x + 2x2 + 4 + 5
= -x + 2x2 + 9
(3x2 - 5x) + (- x2 + 2x + 5) = 3x2 - 5x - x2 + 2x + 5
= 3x2 - x2 - 5x + 2x + 5
= 2x2 - 3x + 5
(-x + 2x2 + 9) - (2x2 - 3x + 5)
= -x + 2x2 + 9 - 2x2 + 3x - 5
= -x + 3x + 2x2 - 2x2 + 9 - 5
= 2x + 4
APPEARS IN
RELATED QUESTIONS
Subtract: - 5y2 from y2
What should be taken away from 3x2 - 4y2 + 5xy + 20 to obtain - x2 - y2 + 6xy + 20?
Add the following algebraic expression:
\[\frac{3}{2}a - \frac{5}{4}b + \frac{2}{5}c, \frac{2}{3}a - \frac{7}{2}b + \frac{7}{2}c, \frac{5}{3}a + \frac{5}{2}b - \frac{5}{4}c\]
Subtract 3x − 4y − 7z from the sum of x − 3y + 2z and − 4x + 9y − 11z.
Solve:
(6a − 5b − 8c) + (15b + 2a − 5c)
The addition of – 7b and 2b is ____________
The expressions 8x + 3y and 7x + 2y cannot be added
Add: 8x, 3x
a(b + c) = a × ____ + a × _____.
Add the following expressions:
p2 – q + r, q2 – r + p and r2 – p + q