Advertisements
Advertisements
Question
From the following table obtain a polynomial of degree y in x.
x | 1 | 2 | 3 | 4 | 5 |
y | 1 | – 1 | 1 | – 1 | 1 |
Solution
We will use Newton’s backward interpolation formula to find the polynomial.
`y_((x = x_"n" + "nh")) = y_"n" + "n"/(1!) ∇y_"n" + ("n"("n" + 1))/(2!) ∇^2y_"n" + ("n"("n" + 1)("n" + 2))/(3!) Delta^2y_"n" + .......`
x | y | `Deltay` | `Delta^2y` | `Delta^3y`` | Delta^4y` |
1 | 1 | ||||
– 2 | |||||
2 | – 1 | 4 | |||
2 | – 8 | ||||
3 | 1 | – 4 | 16 | ||
– 2 | 8 | ||||
4 | – 1 | 4 | |||
2 | |||||
5 | 1 |
To find y in terms of x
xn + nh = x
5 + n(1) = x
∴ n = x – 5
`"y"_((x)) = 1 + ((x - 5))/(1!) (2) + ((x - )(x - 5 + 1))/(2!) (4) + ((x - 5)(x -5 + 1)(x - 5 + 2))/(3!) (8) + ((x - 5)(x - 5 + 1)(x - 5 + 2)(x - 5 + 3))/(4!) (16)`
= `1 + 2(x - 5) + ((x - 5)(x - 4)(4))/2 + ((x - 5)(x - 4)(x - 2)(8))/6 + ((x - 5)(x - 4)(x - 2)(16))/24`
= `1 + 2x - 10 + 2(x^2 - 9x + 20) + 4/3 (x - 5) (x^2 - 7x + 12) + 2/3(x^2 - 9x + 20)(x^2 - 5x + 6)`
= `1 + 2x - 10 + 2x^2 - 18x + 40 + 4/3 [x^3 - 7x^2 + 12x - 5x^2 + 35x - 60] + 2/3 [x^4 - 5x^3 + 6x^2 - 9x^3 + 45x^2 - 54x + 20x^2 - 100x + 120]`
= `2x^2 - 16x + 31 + 4/3 [x^3 - 12x^2 + 47x - 60] + 2/3 [x^4 - 14x^3 + 71x^2 - 154x + 120]`
= `2x^2 - 16x + 31 + 4/3 x^3 - 16x^2 + 188/3 x - 80 + 2/3 x^4 - 28/3 x^3 + 142/3 x^2 - 308/3 x + 80`
= `2/3 x^4 + (4/3 - 28/3) x^3 + (2 - 16 + 142/3) x^2 + (- 16 + 188/3 - 308/3)x + (31 - 80 + 80)`
= `2/3 x^4 + ((-24)/3)x^3+ ((6 - 48 + 142)/3) x^2 + ((-48 + 188 - 308)/3) x + 31`
`y(x) = 2/3 x^4 - 8x^3 + 100/3 x^2 - 56x + 31`
APPEARS IN
RELATED QUESTIONS
In an examination the number of candidates who secured marks between certain intervals was as follows:
Marks | 0 - 19 | 20 - 39 | 40 - 59 | 60 - 79 | 80 - 99 |
No. of candidates |
41 | 62 | 65 | 50 | 17 |
Estimate the number of candidates whose marks are less than 70.
Using interpolation estimate the output of a factory in 1986 from the following data.
Year | 1974 | 1978 | 1982 | 1990 |
Output in 1000 tones |
25 | 60 | 80 | 170 |
Use Lagrange’s formula and estimate from the following data the number of workers getting income not exceeding Rs. 26 per month.
Income not exceeding (₹) |
15 | 25 | 30 | 35 |
No. of workers | 36 | 40 | 45 | 48 |
Using interpolation estimate the business done in 1985 from the following data
Year | 1982 | 1983 | 1984 | 1986 |
Business done (in lakhs) |
150 | 235 | 365 | 525 |
Using interpolation, find the value of f(x) when x = 15
x | 3 | 7 | 11 | 19 |
f(x) | 42 | 43 | 47 | 60 |
Choose the correct alternative:
Lagrange’s interpolation formula can be used for
Choose the correct alternative:
If f(x) = x2 + 2x + 2 and the interval of differencing is unity then Δf(x)
Choose the correct alternative:
For the given data find the value of Δ3y0 is
x | 5 | 6 | 9 | 11 |
y | 12 | 13 | 15 | 18 |
The area A of circle of diameter ‘d’ is given for the following values
D | 80 | 85 | 90 | 95 | 100 |
A | 5026 | 5674 | 6362 | 7088 | 7854 |
Find the approximate values for the areas of circles of diameter 82 and 91 respectively
If u0 = 560, u1 = 556, u2 = 520, u4 = 385, show that u3 = 465