Advertisements
Advertisements
Question
Using interpolation estimate the output of a factory in 1986 from the following data.
Year | 1974 | 1978 | 1982 | 1990 |
Output in 1000 tones |
25 | 60 | 80 | 170 |
Solution
Here the intervals are unequal.
By Lagrange’s in-terpolation formula we have,
x0 = 1974
x1 = 1978
x2 = 1982
x3 = 1990
y0 = 25
y1 = 60
y2 = 80
y3 = 170, and x = 1986.
y = `"f"(x) = ((x - x_1)(x - x_2)(x - x_3))/((x_0 - x_1)(x_0 - x_2)(x_0 - x_3)) xx y_0 + ((x - x_0)(x - x_2)(x - x_3))/((x_1 - x_0)(x_1 - x_2)(x_1 - x_3)) xx y_1 + ((x_ - x_0)(x - x_1)(x - x_2))/((x_2 - x_0)(x_2 - x_1)(x_2 - x_3)) xx y_2 + ((x - x_0)(x x_1)(x - x_2))/((x_3 - x_0)(x_3 - x_1)(x_3 - x_2)) xx y_3`
y = `((1986 - 1978)(1986 - 1982)(196 - 1990))/((1974 - 1978)(1974 - 1982)(1974 - 1990)) xx 25`
`((1986 - 1974)(1986 - 1982)(1986 - 1990))/((1978 - 1974)(1978 - 1982)(1978 - 1990)) xx 60 +`
`((1986 - 1974)(1986 1982)(1986 - 1990))/((1982 - 1974)(1982 - 1982)(1982 - 1990)) xx 80 +`
`((1986 - 1974)(1986 - 1978)(1986 - 1982))/((1990 - 1974)(1990 - 1978)(1990 - 1982)) xx 170 +`
= `(8 xx 4 xx (-4))/((-4) xx (-8) xx (-16)) xx 25 + (12 xx 4 xx (-4))/(4 xx (-4) xx (-12)) xx 60 + (12 xx 8 xx (-4))/(8 xx 4 xx -8) xx 80 + (12 xx 8 xx 4)/(16 xx 12 xx 8) xx 170`
= `25/4 + (-60) + (12 xx 80)/8 + 170/4`
= `25/4 + 170/8 - 60 + 120`
= 6.25 + 42.5 + 60
= 108.75
∴ Output in 1986 is 108.75 (thousand tones)
APPEARS IN
RELATED QUESTIONS
Using Newton’s forward interpolation formula find the cubic polynomial.
x | 0 | 1 | 2 | 3 |
f(x) | 1 | 2 | 1 | 10 |
Find f(2.8) from the following table:
x | 0 | 1 | 2 | 3 |
f(x) | 1 | 2 | 11 | 34 |
Use Lagrange’s formula and estimate from the following data the number of workers getting income not exceeding Rs. 26 per month.
Income not exceeding (₹) |
15 | 25 | 30 | 35 |
No. of workers | 36 | 40 | 45 | 48 |
Using interpolation estimate the business done in 1985 from the following data
Year | 1982 | 1983 | 1984 | 1986 |
Business done (in lakhs) |
150 | 235 | 365 | 525 |
Using interpolation, find the value of f(x) when x = 15
x | 3 | 7 | 11 | 19 |
f(x) | 42 | 43 | 47 | 60 |
Choose the correct alternative:
If f(x) = x2 + 2x + 2 and the interval of differencing is unity then Δf(x)
A second degree polynomial passes though the point (1, –1) (2, –1) (3, 1) (4, 5). Find the polynomial
The area A of circle of diameter ‘d’ is given for the following values
D | 80 | 85 | 90 | 95 | 100 |
A | 5026 | 5674 | 6362 | 7088 | 7854 |
Find the approximate values for the areas of circles of diameter 82 and 91 respectively
From the following table obtain a polynomial of degree y in x.
x | 1 | 2 | 3 | 4 | 5 |
y | 1 | – 1 | 1 | – 1 | 1 |
Using Lagrange’s interpolation formula find a polynominal which passes through the points (0, –12), (1, 0), (3, 6) and (4, 12)