Advertisements
Advertisements
प्रश्न
Using interpolation estimate the output of a factory in 1986 from the following data.
Year | 1974 | 1978 | 1982 | 1990 |
Output in 1000 tones |
25 | 60 | 80 | 170 |
उत्तर
Here the intervals are unequal.
By Lagrange’s in-terpolation formula we have,
x0 = 1974
x1 = 1978
x2 = 1982
x3 = 1990
y0 = 25
y1 = 60
y2 = 80
y3 = 170, and x = 1986.
y = `"f"(x) = ((x - x_1)(x - x_2)(x - x_3))/((x_0 - x_1)(x_0 - x_2)(x_0 - x_3)) xx y_0 + ((x - x_0)(x - x_2)(x - x_3))/((x_1 - x_0)(x_1 - x_2)(x_1 - x_3)) xx y_1 + ((x_ - x_0)(x - x_1)(x - x_2))/((x_2 - x_0)(x_2 - x_1)(x_2 - x_3)) xx y_2 + ((x - x_0)(x x_1)(x - x_2))/((x_3 - x_0)(x_3 - x_1)(x_3 - x_2)) xx y_3`
y = `((1986 - 1978)(1986 - 1982)(196 - 1990))/((1974 - 1978)(1974 - 1982)(1974 - 1990)) xx 25`
`((1986 - 1974)(1986 - 1982)(1986 - 1990))/((1978 - 1974)(1978 - 1982)(1978 - 1990)) xx 60 +`
`((1986 - 1974)(1986 1982)(1986 - 1990))/((1982 - 1974)(1982 - 1982)(1982 - 1990)) xx 80 +`
`((1986 - 1974)(1986 - 1978)(1986 - 1982))/((1990 - 1974)(1990 - 1978)(1990 - 1982)) xx 170 +`
= `(8 xx 4 xx (-4))/((-4) xx (-8) xx (-16)) xx 25 + (12 xx 4 xx (-4))/(4 xx (-4) xx (-12)) xx 60 + (12 xx 8 xx (-4))/(8 xx 4 xx -8) xx 80 + (12 xx 8 xx 4)/(16 xx 12 xx 8) xx 170`
= `25/4 + (-60) + (12 xx 80)/8 + 170/4`
= `25/4 + 170/8 - 60 + 120`
= 6.25 + 42.5 + 60
= 108.75
∴ Output in 1986 is 108.75 (thousand tones)
APPEARS IN
संबंधित प्रश्न
Using graphic method, find the value of y when x = 48 from the following data:
x | 40 | 50 | 60 | 70 |
y | 6.2 | 7.2 | 9.1 | 12 |
Using Newton’s forward interpolation formula find the cubic polynomial.
x | 0 | 1 | 2 | 3 |
f(x) | 1 | 2 | 1 | 10 |
The population of a city in a censes taken once in 10 years is given below. Estimate the population in the year 1955.
Year | 1951 | 1961 | 1971 | 1981 |
Population in lakhs |
35 | 42 | 58 | 84 |
Find the value of f(x) when x = 32 from the following table:
x | 30 | 5 | 40 | 45 | 50 |
f(x) | 15.9 | 14.9 | 14.1 | 13.3 | 12.5 |
The following data gives the melting point of a alloy of lead and zinc where ‘t’ is the temperature in degree c and P is the percentage of lead in the alloy.
P | 40 | 50 | 60 | 70 | 80 | 90 |
T | 180 | 204 | 226 | 250 | 276 | 304 |
Find the melting point of the alloy containing 84 percent lead.
Find f(2.8) from the following table:
x | 0 | 1 | 2 | 3 |
f(x) | 1 | 2 | 11 | 34 |
Use Lagrange’s formula and estimate from the following data the number of workers getting income not exceeding Rs. 26 per month.
Income not exceeding (₹) |
15 | 25 | 30 | 35 |
No. of workers | 36 | 40 | 45 | 48 |
Choose the correct alternative:
For the given points (x0, y0) and (x1, y1) the Lagrange’s formula is
From the following data find y at x = 43 and x = 84.
x | 40 | 50 | 60 | 70 | 80 | 90 |
y | 184 | 204 | 226 | 250 | 276 | 304 |
If u0 = 560, u1 = 556, u2 = 520, u4 = 385, show that u3 = 465