Advertisements
Advertisements
प्रश्न
Choose the correct alternative:
For the given points (x0, y0) and (x1, y1) the Lagrange’s formula is
पर्याय
`y(x) = (x - x_1)/(x_0 - x_1) y_0 + (x - x_0)/(x_1 - x_0) y_1`
`y(x) = (x_1 - x)/(x_0 - x_1) y_0 + (x - x_0)/(x_1 - x_0) y_1`
`y(x) = (x - x_1)/(x_0 - x_1) y_1 + (x - x_0)/(x_1 - x_0) y_0`
`y(x) = (x_1 - x)/(x_0 - x_1) y_1 + (x - x_0)/(x_1 - x_0) y_0`
उत्तर
`y(x) = (x - x_1)/(x_0 - x_1) y_0 + (x - x_0)/(x_1 - x_0) y_1`
APPEARS IN
संबंधित प्रश्न
The following data relates to indirect labour expenses and the level of output
Months | Jan | Feb | Mar |
Units of output | 200 | 300 | 400 |
Indirect labour expenses (Rs) |
2500 | 2800 | 3100 |
Months | Apr | May | June |
Units of output | 640 | 540 | 580 |
Indirect labour expenses (Rs) |
3820 | 3220 | 3640 |
Estimate the expenses at a level of output of 350 units, by using graphic method.
In an examination the number of candidates who secured marks between certain intervals was as follows:
Marks | 0 - 19 | 20 - 39 | 40 - 59 | 60 - 79 | 80 - 99 |
No. of candidates |
41 | 62 | 65 | 50 | 17 |
Estimate the number of candidates whose marks are less than 70.
Find f(2.8) from the following table:
x | 0 | 1 | 2 | 3 |
f(x) | 1 | 2 | 11 | 34 |
Choose the correct alternative:
For the given data find the value of Δ3y0 is
x | 5 | 6 | 9 | 11 |
y | 12 | 13 | 15 | 18 |
A second degree polynomial passes though the point (1, –1) (2, –1) (3, 1) (4, 5). Find the polynomial
Find the missing figures in the following table:
x | 0 | 5 | 10 | 15 | 20 | 25 |
y | 7 | 11 | - | 18 | - | 32 |
Find f(0.5) if f(– 1) = 202, f(0) = 175, f(1) = 82 and f(2) = 55
The area A of circle of diameter ‘d’ is given for the following values
D | 80 | 85 | 90 | 95 | 100 |
A | 5026 | 5674 | 6362 | 7088 | 7854 |
Find the approximate values for the areas of circles of diameter 82 and 91 respectively
From the following table obtain a polynomial of degree y in x.
x | 1 | 2 | 3 | 4 | 5 |
y | 1 | – 1 | 1 | – 1 | 1 |
Using Lagrange’s interpolation formula find a polynominal which passes through the points (0, –12), (1, 0), (3, 6) and (4, 12)