Advertisements
Advertisements
प्रश्न
The area A of circle of diameter ‘d’ is given for the following values
D | 80 | 85 | 90 | 95 | 100 |
A | 5026 | 5674 | 6362 | 7088 | 7854 |
Find the approximate values for the areas of circles of diameter 82 and 91 respectively
उत्तर
To find A at D = 82
Since the value of A is required near the beginning of the table.
We use the Newton’s forward interpolation formula.
`"A"("D" = "D"_0 + "nh") = "A"_0 + "n"/(1!) Delta"A"_0 + ("n"("n" - 1))/(2!) Delta^2"A"_0 + ("n"("n" - 1)("n" - 2))/(3!) Delta^3"A"_0 + .....`
`"D"_0 + "nh" = "D" => 80 + "n"(5)` = 82
5n = 82 – 80 = 2
n = `2/5`
n = 0.4
D | A | `Delta"A"` | `Delta^2"A"` | `Delta^3"A"` | `Delta^4"A"` |
80 | 5026 | ||||
648 | |||||
85 | 5674 | 40 | |||
688 | – 2 | ||||
90 | 6362 | 38 | 4 | ||
726 | 2 | ||||
95 | 7088 | 40 | |||
766 | |||||
100 | 7854 |
`"A"_(("at" "D" = 82)) = 5026 + 0.4/(1!) (648) + ((0.4)(0.4 - 1))/(2!) (40) + ((0.4)(0.4 - 1)(0.4 - 2))/(3!) (- 2) + ((0.4)(0.4 - 1)(0.4 - 2)(0.4 - 3))/(4!) (4)`
= `5026 + 0.4(648) + ((0.4)(-0.6))/ (40) + ((0.4)(-0.6)(-1.6))/6 (-2) + ((0.4)(-0.6)(-1.6)(-2.6))/24 (4)`
= 5026 + 259.2 – 4.8 – 0.128 – 0.1664
= 5285.2 – 5.0944
= 5280.1056
A = 5280.11
To find Δ at D = 91
Since the value of A is required near the beginning of the table.
We use the Newton’s forward interpolation formula.
`"A"("D" = "D"_"n" "nh") = "A"_"n" + "n"/(1!) ∇"A"_"n" + ("n"("n" - 1))/(2!) ∇^2"A"_"n" + ("n"("n" - 1)("n" - 2))/(3!) ∇^"A"_"n" + ......`
`Delta"n" + "n"` = D
100 + n(5) = 91
5n = 91 – 100
⇒ 5n = – 9
n = `(-9)/5`
n = – 1.8
D | A | `Delta"A"` | `Delta^2"A"` | `Delta^3"A"` |
80 | 5026 | |||
648 | ||||
85 | 5674 | 40 | ||
688 | – 2 | |||
90 | 6362 | 38 | ||
726 | 2 | |||
95 | 7088 | 40 | ||
766 | ||||
100 | 7854 |
`"A"_(("at" "D" = 91)) = 7854 + ((-1.8))/(1) (766) + ((-1.8)(-1.8 + 1))/(2!) (40) + ((1.8)(-1.8 + 1)(-1.8 + 2))/(3!) (2) ((-1.8)(-1.8 + 1)(-1.8 + 2)(-1.8 + 3))/(4!) (4)`
= `7854 - 1378.8 + ((-1.8)(-0.8))/2 (40) + ((-1.8)(-0.8)(0.2))/6 (2) + ((-1.8)(-0.8)(0.2)(1.2))/24 (4)`
= 7854 – 1378.8 + 28.8 + 0.096 + 0.0576
= 7882.9536 – 1378.8
= 6504.1536
= 6504.15
APPEARS IN
संबंधित प्रश्न
The following data relates to indirect labour expenses and the level of output
Months | Jan | Feb | Mar |
Units of output | 200 | 300 | 400 |
Indirect labour expenses (Rs) |
2500 | 2800 | 3100 |
Months | Apr | May | June |
Units of output | 640 | 540 | 580 |
Indirect labour expenses (Rs) |
3820 | 3220 | 3640 |
Estimate the expenses at a level of output of 350 units, by using graphic method.
Using interpolation estimate the business done in 1985 from the following data
Year | 1982 | 1983 | 1984 | 1986 |
Business done (in lakhs) |
150 | 235 | 365 | 525 |
Using interpolation, find the value of f(x) when x = 15
x | 3 | 7 | 11 | 19 |
f(x) | 42 | 43 | 47 | 60 |
Choose the correct alternative:
For the given points (x0, y0) and (x1, y1) the Lagrange’s formula is
Choose the correct alternative:
Lagrange’s interpolation formula can be used for
A second degree polynomial passes though the point (1, –1) (2, –1) (3, 1) (4, 5). Find the polynomial
Find f(0.5) if f(– 1) = 202, f(0) = 175, f(1) = 82 and f(2) = 55
From the following data find y at x = 43 and x = 84.
x | 40 | 50 | 60 | 70 | 80 | 90 |
y | 184 | 204 | 226 | 250 | 276 | 304 |
If u0 = 560, u1 = 556, u2 = 520, u4 = 385, show that u3 = 465
Using Lagrange’s interpolation formula find a polynominal which passes through the points (0, –12), (1, 0), (3, 6) and (4, 12)