मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी वाणिज्य इयत्ता १२

From the following table obtain a polynomial of degree y in x. x 1 2 3 4 5 y 1 – 1 1 – 1 1 - Business Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

From the following table obtain a polynomial of degree y in x.

x 1 2 3 4 5
y 1 – 1 1 – 1 1
तक्ता
बेरीज

उत्तर

We will use Newton’s backward interpolation formula to find the polynomial.

`y_((x = x_"n" + "nh")) = y_"n" + "n"/(1!) ∇y_"n" + ("n"("n" + 1))/(2!) ∇^2y_"n" + ("n"("n" + 1)("n" + 2))/(3!) Delta^2y_"n" + .......`

x y `Deltay` `Delta^2y` `Delta^3y`` Delta^4y`
1 1        
    – 2      
2 – 1   4    
    2   – 8  
3 1   – 4   16
    – 2   8  
4 – 1   4    
    2      
5 1        

To find y in terms of x

xn + nh = x

5 + n(1) = x

∴ n = x – 5

`"y"_((x)) = 1 + ((x - 5))/(1!) (2) + ((x - )(x - 5 + 1))/(2!) (4) + ((x - 5)(x -5 + 1)(x - 5 + 2))/(3!) (8) + ((x - 5)(x - 5 + 1)(x - 5 + 2)(x - 5 + 3))/(4!) (16)`

= `1 + 2(x - 5) + ((x - 5)(x - 4)(4))/2 + ((x - 5)(x - 4)(x - 2)(8))/6 + ((x - 5)(x - 4)(x - 2)(16))/24`

= `1 + 2x - 10 + 2(x^2 - 9x + 20) + 4/3 (x - 5) (x^2 - 7x + 12) + 2/3(x^2 - 9x + 20)(x^2 - 5x + 6)`

= `1 + 2x - 10 + 2x^2 - 18x + 40 + 4/3 [x^3 - 7x^2 + 12x - 5x^2 + 35x - 60] + 2/3 [x^4 - 5x^3 +  6x^2 - 9x^3 + 45x^2 - 54x + 20x^2 - 100x + 120]`

= `2x^2 - 16x + 31 + 4/3 [x^3 - 12x^2 + 47x - 60] + 2/3 [x^4 - 14x^3 + 71x^2 - 154x + 120]`

= `2x^2 - 16x + 31 + 4/3 x^3 - 16x^2 + 188/3 x - 80 + 2/3 x^4 - 28/3 x^3 + 142/3 x^2 - 308/3 x + 80`

= `2/3 x^4 + (4/3 - 28/3) x^3 + (2 - 16 + 142/3) x^2 + (- 16 + 188/3 - 308/3)x + (31 - 80 + 80)`

= `2/3 x^4 + ((-24)/3)x^3+ ((6 - 48 + 142)/3) x^2 + ((-48 + 188 - 308)/3) x + 31`

`y(x) = 2/3 x^4 - 8x^3 + 100/3 x^2 - 56x + 31`

shaalaa.com
Interpolation
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Numerical Methods - Miscellaneous problems [पृष्ठ १२१]

APPEARS IN

सामाचीर कलवी Business Mathematics and Statistics [English] Class 12 TN Board
पाठ 5 Numerical Methods
Miscellaneous problems | Q 9 | पृष्ठ १२१

संबंधित प्रश्‍न

Using graphic method, find the value of y when x = 48 from the following data:

x 40 50 60 70
y 6.2 7.2 9.1 12

The following data relates to indirect labour expenses and the level of output

Months Jan Feb Mar
Units of output 200 300 400
Indirect labour
expenses (Rs)
2500 2800 3100
Months Apr May June
Units of output 640 540 580
Indirect labour
expenses (Rs)
3820 3220 3640

Estimate the expenses at a level of output of 350 units, by using graphic method.


The population of a city in a censes taken once in 10 years is given below. Estimate the population in the year 1955.

Year 1951 1961 1971 1981
Population in
lakhs
35 42 58 84

In an examination the number of candidates who secured marks between certain intervals was as follows:

Marks 0 - 19 20 - 39 40 - 59 60 - 79 80 - 99
No. of
candidates
41 62 65 50 17

Estimate the number of candidates whose marks are less than 70.


Find the value of f(x) when x = 32 from the following table:

x 30 5 40 45 50
f(x) 15.9 14.9 14.1 13.3 12.5

Use Lagrange’s formula and estimate from the following data the number of workers getting income not exceeding Rs. 26 per month.

Income not
exceeding (₹)
15 25 30 35
No. of workers 36 40 45 48

Find the missing figures in the following table:

x 0 5 10 15 20 25
y 7 11 - 18 - 32

Find f(0.5) if f(– 1) = 202, f(0) = 175, f(1) = 82 and f(2) = 55


If u0 = 560, u1 = 556, u2 = 520, u4 = 385, show that u3 = 465


Using Lagrange’s interpolation formula find a polynominal which passes through the points (0, –12), (1, 0), (3, 6) and (4, 12)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×