Advertisements
Advertisements
प्रश्न
Use Lagrange’s formula and estimate from the following data the number of workers getting income not exceeding Rs. 26 per month.
Income not exceeding (₹) |
15 | 25 | 30 | 35 |
No. of workers | 36 | 40 | 45 | 48 |
उत्तर
Here the intervals are unequal.
By Lagrange’s In-terpolation formula we have,
x0 = 15
x1 = 25
x2 = 30
x3 = 35
y0 = 36
y1 = 40
y2 = 45
y3 = 48 and x = 26.
y = `"f"(x) = ((x_ - x_1)(x - x_2)(x - x_3))/((x_0 - x_1)(x_0 - x_2)(x_0 - x_3)) xx y_0 + ((x - x_0)(x - x_2)(x - x_3))/((x_1 - x_0)(x_1 - x_2)(x_1 - x_3)) xx y_1 + ((x - x_0)(x - x_1)(x - x_3))/((x_2 -x_0)(x_2 - x_1)(x_2 - x_3)) xx y_2 + ((x - x_0)(x - x_1)(x - _2))/((x_3 - x_0)(x_3 - x_1)(x_3 - x_2)) xx y_3`
y = `((26 - 25)(26 - 30)(26 - 35))/((15 - 25)(15 - 30)(15 - 35)) xx 36 + ((26 - 15)(26 - 30)(26 - 35))/((25 - 15)(25 - 30)(25 - 35)) xx 40 + ((26 - 15)(26 - 25)(26 - 35))/((20 - 15)(30 - 25)(30 - 35)) xx 45 + ((26 - 15)(26 - 25)(26 - 30))/((35 - 15)(35 - 25)(35 - 30)) xx 48`
= `((1) xx (-4) xx (-9))/((-10) xx (-15) xx (-20)) xx 36 + (11 xx (-4) xx (-9))/(10 xx (-5) xx (-10)) xx 40 + (11 xx 1 xx (-9))/(10 xx (-5) xx (-10)) xx 45 + (11 xx 1 xx (-4))/(20 xx 10 xx 5) xx 48`
= `(36 xx 36)/(-3000) + (11 xx 36 xx 40)/500 + (-99 xx 45)/(-375) + (-44 xx 48)/1000`
= `1296/(-3000) + 15840/500 + 4455/375 - 2112/1000`
= `- 0.432 + 31.68 + 11.88 - 2.112`
= 43.56 – 2.544
= 41.016
∴ Required No.of workers = 42 Persons (approximately)
APPEARS IN
संबंधित प्रश्न
The following data relates to indirect labour expenses and the level of output
Months | Jan | Feb | Mar |
Units of output | 200 | 300 | 400 |
Indirect labour expenses (Rs) |
2500 | 2800 | 3100 |
Months | Apr | May | June |
Units of output | 640 | 540 | 580 |
Indirect labour expenses (Rs) |
3820 | 3220 | 3640 |
Estimate the expenses at a level of output of 350 units, by using graphic method.
Using Newton’s forward interpolation formula find the cubic polynomial.
x | 0 | 1 | 2 | 3 |
f(x) | 1 | 2 | 1 | 10 |
In an examination the number of candidates who secured marks between certain intervals was as follows:
Marks | 0 - 19 | 20 - 39 | 40 - 59 | 60 - 79 | 80 - 99 |
No. of candidates |
41 | 62 | 65 | 50 | 17 |
Estimate the number of candidates whose marks are less than 70.
Find the value of f(x) when x = 32 from the following table:
x | 30 | 5 | 40 | 45 | 50 |
f(x) | 15.9 | 14.9 | 14.1 | 13.3 | 12.5 |
Find f(2.8) from the following table:
x | 0 | 1 | 2 | 3 |
f(x) | 1 | 2 | 11 | 34 |
Find the missing figures in the following table:
x | 0 | 5 | 10 | 15 | 20 | 25 |
y | 7 | 11 | - | 18 | - | 32 |
From the following data find y at x = 43 and x = 84.
x | 40 | 50 | 60 | 70 | 80 | 90 |
y | 184 | 204 | 226 | 250 | 276 | 304 |
If u0 = 560, u1 = 556, u2 = 520, u4 = 385, show that u3 = 465
From the following table obtain a polynomial of degree y in x.
x | 1 | 2 | 3 | 4 | 5 |
y | 1 | – 1 | 1 | – 1 | 1 |
Using Lagrange’s interpolation formula find a polynominal which passes through the points (0, –12), (1, 0), (3, 6) and (4, 12)