Advertisements
Advertisements
प्रश्न
Find the value of f(x) when x = 32 from the following table:
x | 30 | 5 | 40 | 45 | 50 |
f(x) | 15.9 | 14.9 | 14.1 | 13.3 | 12.5 |
उत्तर
Since the value of f(x) is required near the beginning of the table
We use the Newton’s forward interpolation formula.
`y_((x = x_0 + "nh")) = y_0 + "n"/(1!) Deltay_0 + ("n"("n" - 1))/(2!) Delta^2y_0 + ("n"("n" - 1)("n" - 3))/(3!) Delta^3y_0 + .........`
To find y at x = 32
∴ x0 + nh = 32;
30 + n(5) = 32
5n = 32 – 30
⇒ 5n = 2
n = `2/5`
∴ n = 0.4
x | y | `Deltay` | `Delta^2y` | `Delta^3y` | `Delta^4y` |
30 | 15.9 | ||||
– 1 | |||||
35 | 14.9 | 0.2 | |||
– 0.8 | – 0.2 | ||||
40 | 14.1 | 0 | 0.2 | ||
– 0.8 | 0 | ||||
45 | 13.3 | 0 | |||
– 0.8 | |||||
50 | 12.5 |
`y_((x = 32)) = 15.9 + ((0.4))/(1!) (1) + ((0.40.4 - 1))/(2!) (0.2) + ((0.4)(0.4 - 1)(0.4 - 2))/(3) (- 0.2) + ((0.4)(.4 - 1)(0.4 - 2)(0.4 - 3))/(4!) (0.2) +`
= 15.9 – 0.4 – 0.024 – 0.0128 – 0.00832
15.9 – 0.44512 = 15.45488
= 15.45
∴ When x = 32, f(x) = 15.45
APPEARS IN
संबंधित प्रश्न
The following data relates to indirect labour expenses and the level of output
Months | Jan | Feb | Mar |
Units of output | 200 | 300 | 400 |
Indirect labour expenses (Rs) |
2500 | 2800 | 3100 |
Months | Apr | May | June |
Units of output | 640 | 540 | 580 |
Indirect labour expenses (Rs) |
3820 | 3220 | 3640 |
Estimate the expenses at a level of output of 350 units, by using graphic method.
Using Newton’s forward interpolation formula find the cubic polynomial.
x | 0 | 1 | 2 | 3 |
f(x) | 1 | 2 | 1 | 10 |
The population of a city in a censes taken once in 10 years is given below. Estimate the population in the year 1955.
Year | 1951 | 1961 | 1971 | 1981 |
Population in lakhs |
35 | 42 | 58 | 84 |
Using interpolation estimate the business done in 1985 from the following data
Year | 1982 | 1983 | 1984 | 1986 |
Business done (in lakhs) |
150 | 235 | 365 | 525 |
Choose the correct alternative:
Lagrange’s interpolation formula can be used for
Choose the correct alternative:
If f(x) = x2 + 2x + 2 and the interval of differencing is unity then Δf(x)
Find the missing figures in the following table:
x | 0 | 5 | 10 | 15 | 20 | 25 |
y | 7 | 11 | - | 18 | - | 32 |
Find f(0.5) if f(– 1) = 202, f(0) = 175, f(1) = 82 and f(2) = 55
From the following data find y at x = 43 and x = 84.
x | 40 | 50 | 60 | 70 | 80 | 90 |
y | 184 | 204 | 226 | 250 | 276 | 304 |
The area A of circle of diameter ‘d’ is given for the following values
D | 80 | 85 | 90 | 95 | 100 |
A | 5026 | 5674 | 6362 | 7088 | 7854 |
Find the approximate values for the areas of circles of diameter 82 and 91 respectively