Advertisements
Advertisements
प्रश्न
Use Lagrange’s formula and estimate from the following data the number of workers getting income not exceeding Rs. 26 per month.
Income not exceeding (₹) |
15 | 25 | 30 | 35 |
No. of workers | 36 | 40 | 45 | 48 |
उत्तर
Here the intervals are unequal.
By Lagrange’s In-terpolation formula we have,
x0 = 15
x1 = 25
x2 = 30
x3 = 35
y0 = 36
y1 = 40
y2 = 45
y3 = 48 and x = 26.
y = `"f"(x) = ((x_ - x_1)(x - x_2)(x - x_3))/((x_0 - x_1)(x_0 - x_2)(x_0 - x_3)) xx y_0 + ((x - x_0)(x - x_2)(x - x_3))/((x_1 - x_0)(x_1 - x_2)(x_1 - x_3)) xx y_1 + ((x - x_0)(x - x_1)(x - x_3))/((x_2 -x_0)(x_2 - x_1)(x_2 - x_3)) xx y_2 + ((x - x_0)(x - x_1)(x - _2))/((x_3 - x_0)(x_3 - x_1)(x_3 - x_2)) xx y_3`
y = `((26 - 25)(26 - 30)(26 - 35))/((15 - 25)(15 - 30)(15 - 35)) xx 36 + ((26 - 15)(26 - 30)(26 - 35))/((25 - 15)(25 - 30)(25 - 35)) xx 40 + ((26 - 15)(26 - 25)(26 - 35))/((20 - 15)(30 - 25)(30 - 35)) xx 45 + ((26 - 15)(26 - 25)(26 - 30))/((35 - 15)(35 - 25)(35 - 30)) xx 48`
= `((1) xx (-4) xx (-9))/((-10) xx (-15) xx (-20)) xx 36 + (11 xx (-4) xx (-9))/(10 xx (-5) xx (-10)) xx 40 + (11 xx 1 xx (-9))/(10 xx (-5) xx (-10)) xx 45 + (11 xx 1 xx (-4))/(20 xx 10 xx 5) xx 48`
= `(36 xx 36)/(-3000) + (11 xx 36 xx 40)/500 + (-99 xx 45)/(-375) + (-44 xx 48)/1000`
= `1296/(-3000) + 15840/500 + 4455/375 - 2112/1000`
= `- 0.432 + 31.68 + 11.88 - 2.112`
= 43.56 – 2.544
= 41.016
∴ Required No.of workers = 42 Persons (approximately)
APPEARS IN
संबंधित प्रश्न
The following data relates to indirect labour expenses and the level of output
Months | Jan | Feb | Mar |
Units of output | 200 | 300 | 400 |
Indirect labour expenses (Rs) |
2500 | 2800 | 3100 |
Months | Apr | May | June |
Units of output | 640 | 540 | 580 |
Indirect labour expenses (Rs) |
3820 | 3220 | 3640 |
Estimate the expenses at a level of output of 350 units, by using graphic method.
Using Newton’s forward interpolation formula find the cubic polynomial.
x | 0 | 1 | 2 | 3 |
f(x) | 1 | 2 | 1 | 10 |
In an examination the number of candidates who secured marks between certain intervals was as follows:
Marks | 0 - 19 | 20 - 39 | 40 - 59 | 60 - 79 | 80 - 99 |
No. of candidates |
41 | 62 | 65 | 50 | 17 |
Estimate the number of candidates whose marks are less than 70.
The following data gives the melting point of a alloy of lead and zinc where ‘t’ is the temperature in degree c and P is the percentage of lead in the alloy.
P | 40 | 50 | 60 | 70 | 80 | 90 |
T | 180 | 204 | 226 | 250 | 276 | 304 |
Find the melting point of the alloy containing 84 percent lead.
Find f(2.8) from the following table:
x | 0 | 1 | 2 | 3 |
f(x) | 1 | 2 | 11 | 34 |
Using interpolation estimate the business done in 1985 from the following data
Year | 1982 | 1983 | 1984 | 1986 |
Business done (in lakhs) |
150 | 235 | 365 | 525 |
Choose the correct alternative:
If f(x) = x2 + 2x + 2 and the interval of differencing is unity then Δf(x)
Choose the correct alternative:
For the given data find the value of Δ3y0 is
x | 5 | 6 | 9 | 11 |
y | 12 | 13 | 15 | 18 |
From the following data find y at x = 43 and x = 84.
x | 40 | 50 | 60 | 70 | 80 | 90 |
y | 184 | 204 | 226 | 250 | 276 | 304 |
The area A of circle of diameter ‘d’ is given for the following values
D | 80 | 85 | 90 | 95 | 100 |
A | 5026 | 5674 | 6362 | 7088 | 7854 |
Find the approximate values for the areas of circles of diameter 82 and 91 respectively