Advertisements
Advertisements
प्रश्न
In an examination the number of candidates who secured marks between certain intervals was as follows:
Marks | 0 - 19 | 20 - 39 | 40 - 59 | 60 - 79 | 80 - 99 |
No. of candidates |
41 | 62 | 65 | 50 | 17 |
Estimate the number of candidates whose marks are less than 70.
उत्तर
Since the required mark is at the end of the table
We apply backward interpolation formula.
Let the marks be x and No. of candidates be y.
x | y | `Deltay` | `Delta^2y` | `Delta^3y` | `Delta^4y` |
Below 20 | 41 | ||||
62 | |||||
Below 40 | 103 | 3 | |||
65 | – 18 | ||||
Below 60 | 168 | – 15 | 0 | ||
50 | – 18 | ||||
Below 80 | 218 | – 33 | |||
17 | |||||
Below 100 | 235 |
`y_((x = x_0 + "nh")) = y_"n" + "n"/(1!) ∇y_"n" + ("n"("n" + 1))/(2!) ∇^2y_"n" + ("n"("n" + 1)("n" + 2))/(3!) Delta^3y_"n" + ..........`
To find y at x = 70
x = x0 + nh
⇒ 70 = 100 + n(20)
70 – 100 = 20n
20n = – 30
⇒ n = `(- 30)/20`
n = – 1.5
`y_((x = 70)) = 235 + ((- 1.5))/(1!) (17) + ((-1.5)(- 1.5 + 1))/(2!) (- 33) + ((- 1.5)(-1.5 + 1)(-1.5 + 2))/(3!) (- 18) 6 ((1.5)(-1.5 + 1)(-1.5 + 2)(-1.5 + 3))/(4!) (0) +`
= `235 - 25.5 + ((-1.5)(-0.5)(-33))/2 + ((-1.5)(-0.5)(0.5))/6 (-18)`
= 235 – 25.5 – 12.375 – 1.125
= 235 – 39
= 196
∴ 196 candidates secured less than 70 marks
APPEARS IN
संबंधित प्रश्न
Using Newton’s forward interpolation formula find the cubic polynomial.
x | 0 | 1 | 2 | 3 |
f(x) | 1 | 2 | 1 | 10 |
The population of a city in a censes taken once in 10 years is given below. Estimate the population in the year 1955.
Year | 1951 | 1961 | 1971 | 1981 |
Population in lakhs |
35 | 42 | 58 | 84 |
The following data gives the melting point of a alloy of lead and zinc where ‘t’ is the temperature in degree c and P is the percentage of lead in the alloy.
P | 40 | 50 | 60 | 70 | 80 | 90 |
T | 180 | 204 | 226 | 250 | 276 | 304 |
Find the melting point of the alloy containing 84 percent lead.
Find f(2.8) from the following table:
x | 0 | 1 | 2 | 3 |
f(x) | 1 | 2 | 11 | 34 |
Using interpolation estimate the output of a factory in 1986 from the following data.
Year | 1974 | 1978 | 1982 | 1990 |
Output in 1000 tones |
25 | 60 | 80 | 170 |
Using interpolation, find the value of f(x) when x = 15
x | 3 | 7 | 11 | 19 |
f(x) | 42 | 43 | 47 | 60 |
Find the missing figures in the following table:
x | 0 | 5 | 10 | 15 | 20 | 25 |
y | 7 | 11 | - | 18 | - | 32 |
From the following data find y at x = 43 and x = 84.
x | 40 | 50 | 60 | 70 | 80 | 90 |
y | 184 | 204 | 226 | 250 | 276 | 304 |
The area A of circle of diameter ‘d’ is given for the following values
D | 80 | 85 | 90 | 95 | 100 |
A | 5026 | 5674 | 6362 | 7088 | 7854 |
Find the approximate values for the areas of circles of diameter 82 and 91 respectively
If u0 = 560, u1 = 556, u2 = 520, u4 = 385, show that u3 = 465