Advertisements
Advertisements
Question
Give the physical significance of self-inductance of a coil.
Solution
When a circuit is switched on, the increasing current induces an emf which opposes the growth of current in a circuit. Likewise, when circuit is broken, the decreasing current induces an emf in the reverse direction. This emf now opposes the decay of current.
(a) Increasing current
(b) Decreasing current
Induced emf ε opposes the changing current i
Thus, the inductance of the coil opposes any change in current and tries to maintain the original state.
APPEARS IN
RELATED QUESTIONS
When the current changes from +2A to −2A in 0.05 s, an emf of 8 V is induced in a coil. The co-efficient of self-induction of the coil is
A circular coil with a cross-sectional area of 4 cm2 has 10 turns. It is placed at the centre of a long solenoid that has 15 turns/cm and a cross-sectional area of 10 cm2. The axis of the coil coincides with the axis of the solenoid. What is their mutual inductance?
What do you mean by self-induction?
What is meant by mutual induction?
How will you define the unit of inductance?
What do you understand by self-inductance of a coil?
Show that the mutual inductance between a pair of coils is same (M12 = M21).
Determine the self-inductance of 4000 turn air-core solenoid of length 2m and diameter 0.04 m.
A long solenoid having 400 turns per cm carries a current 2A. A 100 turn coil of cross-sectional area 4 cm2 is placed co-axially inside the solenoid so that the coil is in the field produced by the solenoid. Find the emf induced in the coil if the current through the solenoid reverses its direction in 0.04 sec.
The solenoids S1 and S2 are wound on an iron-core of relative permeability 900. The area of their cross-section and their length are the same and are 4 cm2 and 0.04 m, respectively. If the number of turns in S1 is 200 and that in S2 is 800, calculate the mutual inductance between the coils. The current in solenoid 1 is increased from 2A to 8A in 0.04 second. Calculate the induced emf in solenoid 2.