English

हल कीजिए: 24x < 100, जब x एक प्राकृत संख्या है। - Mathematics (गणित)

Advertisements
Advertisements

Question

हल कीजिए: 24x < 100, जब x एक प्राकृत संख्या है।

Sum

Solution

यह देखते हुए की 24x < 100 हमें प्राप्त होता है
24 से दोनों पक्षों में भाग करने पर

⇒ x < `100/24`

⇒ x < `25/6`

x एक प्राकृतिक संख्या हैं।

हमें पता है की `25/6` से केवल 1, 2, 3, 4 प्राकृतिक संख्याएँ कम हैं।

 यदि x एक प्राकृत संख्या है तो हल {1, 2, 3, 4} है।

shaalaa.com
एक चर राशि के रैखिक असमिकाओं का बीजगणितीय हल और उनका आलेखीय निरूपण
  Is there an error in this question or solution?
Chapter 6: रैखिक असमिकाएँ - प्रश्नावली 6.1 [Page 130]

APPEARS IN

NCERT Mathematics [Hindi] Class 11
Chapter 6 रैखिक असमिकाएँ
प्रश्नावली 6.1 | Q 1. (i) | Page 130

RELATED QUESTIONS

हल कीजिए 24x < 100, जब x एक पूर्णांक है।


हल कीजिए: -12x > 30, जब x एक प्राकृत संख्या है।


हल कीजिए: -12x > 30, जब x एक पूर्णांक है।


हल कीजिए: 5x – 3 <7, जब x एक वास्तविक संख्या है।


हल कीजिए: 3x + 8 > 2, जब x एक पूर्णांक है।


निम्नलिखित प्रश्न वास्तविक संख्या x के लिए हल कीजिए: 3(2 – x) ≥ 2 (1 – x)


निम्नलिखित प्रश्न वास्तविक संख्या x के लिए हल कीजिए: `x/3 > x/2 + 1`


निम्नलिखित प्रश्न वास्तविक संख्या x के लिए हल कीजिए: `(3(x-2))/5 <= (5(2-x))/3`


निम्नलिखित प्रश्न वास्तविक संख्या x के लिए हल कीजिए: `1/2 ((3x)/5 + 4) >= 1/3 (x -6)`


निम्नलिखित प्रश्न वास्तविक संख्या x के लिए हल कीजिए: 2(2x + 3) – 10 < 6 (x – 2)


निम्नलिखित प्रश्न वास्तविक संख्या x के लिए हल कीजिए: 37 – (3x + 5) ≥ 9x – 8(x – 3)


निम्नलिखित प्रश्न वास्तविक संख्या x के लिए हल कीजिए: `x/4 < (5x - 2)/3 - (7x - 3)/5`


किसी पाठ्यक्रम में ग्रेड 'A' पाने के लिए एक व्यक्ति को सभी पाँच परीक्षाओं (प्रत्येक 100 अंकों में से) में 90 अंक या अधिक अंक का औसत प्राप्त करना चाहिए यदि सुनीता के प्रथम चार परीक्षाओं के प्राप्तांक 87,92, 94 और 95 हों तो वह न्यूनतम अंक ज्ञात कीजिए जिसे पांचवीं परीक्षा में प्राप्त करके सुनीता उस पाठ्यक्रम में ग्रेड 'A' पाएगी।


क्रमागत सम संख्याओं के ऐसे युग्म ज्ञात कीजिए जिनमें से प्रत्येक 5 से बड़े हों, तथा उनका योगफल 23 से कम हो।


एक त्रिभुज की सबसे बड़ी भुजा सबसे छोटी भुजा की तीन गुनी है तथा त्रिभुज की तीसरी भुजा सबसे बड़ी भुजा से 2 सेमी कम है। तीसरी भुजा की न्यूनतम लंबाई ज्ञात कीजिए जबकि त्रिभुज का परिमाप न्यूनतम 61 सेमी है।


असमानता को हल कीजिए:

`-15 < (3(x -  2))/5 <= 0`


असमिका को हल कीजिए:

`-12 < 4 - (3x)/(-5) <= 2`


असमानता को हल कीजिए:

`7 <= (3x + 11)/2 <= 11`


असमिका को हल कीजिए और हल को संख्या रेखा पर निरूपित कीजिए।

2(x – 1) < x + 5, 3(x + 2) > 2 – x


असमिकाओं को हल कीजिए और हल को संख्या रेखा पर निरूपित कीजिए।

3x – 7 > 2(x -6), 6 – x > 11 – 2x


असमिकाओं को हल कीजिए और हल को संख्या रेखा पर निरूपित कीजिए।

5(2x – 7) – 3(2x + 3) ≤ 0, 2x + 19 ≤ 6x + 47


प्रश्न में x चर वाले किसी रैखिक असमिका के हल को संख्या रेखा पर निरूपित किया गया है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×