English

How Does the Mutual Inductance of a Pair of Coils Change When (I) Distance Between the Coils is Increased and (Ii) Number of Turns in the Coils is Increased? - Physics

Advertisements
Advertisements

Question

How does the mutual inductance of a pair of coils change when

(i) distance between the coils is increased and

(ii) number of turns in the coils is increased?

Solution

(i) As, φ = MI, with the increase in the distance between the coils the magnetic flux linked with the secondary coil decreases and hence the mutual inductance of the two coils will decrease.

(ii) Mutual inductance of two coils can be found out by, M = μon1n2Al, i.e. M ∝ n1n2, so, with the increase in number of turns mutual inductance increases.

shaalaa.com
  Is there an error in this question or solution?
2012-2013 (March) All India Set 1

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

The current flowing through an inductor of self inductance L is continuously increasing. Plot a graph showing the variation of

Magnetic flux versus the current


A rectangular coil having 60 turns and area of 0.4m2 is held at right angles to a uniform magnetic field of flux density 5 × 10-5T. Calculate the magnetic flux passing through it.


Figure shows a rectangular loop conducting PQRS in which the arm PQ is free to move. A uniform magnetic field acts in the direction perpendicular to the plane of the loop. Arm PQ is moved with a velocity v towards the arm Rs. Assuming that the arms QR, RS and SP have negligible resistances and the moving arm PQ has the resistance r, obtain the expression for (i) the current in the loop (ii) the force and (iii) the power required to move the arm PQ.


Calculate magnetic flux density of the magnetic field at the centre of a circular coil of 50 turns, having a radius of 0.5m and carrying a current of 5 A.


Find magnetic flux density at a point on the axis of a long solenoid having 5000 tums/m when it carrying a current of 2 A.


The magnetic flux linked with the coil (in Weber) is given by the equation- Փ = 5t2 + 3t + 16. The induced EMF in the coil at time, t = 4 will be ______.


The dimensional formula of magnetic flux is ______.


A loop, made of straight edges has six corners at A(0, 0, 0), B(L, O, 0) C(L, L, 0), D(0, L, 0) E(0, L, L) and F(0, 0, L). A magnetic field `B = B_o(hati + hatk)`T is present in the region. The flux passing through the loop ABCDEFA (in that order) is ______.


A cylindrical bar magnet is rotated about its axis (Figure). A wire is connected from the axis and is made to touch the cylindrical surface through a contact. Then


The Figure below shows an infinitely long metallic wire YY' which is carrying a current I'.

P is a point at a perpendicular distance r from it.

  1. What is the direction of magnetic flux density B of the magnetic field at the point P?
  2. What is the magnitude of magnetic flux density B of the magnetic field at the point P?
  3. Another metallic wire MN having length l and carrying a current I is now kept at point P. If the two wires are in vacuum and parallel to each other, how much force acts on the wire MN due to the current I' flowing in the wire YY'?

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×