English

If (−1, 2), (2, −1) and (3, 1) Are Any Three Vertices of a Parallelogram, Then - Mathematics

Advertisements
Advertisements

Question

If (−1, 2), (2, −1) and (3, 1) are any three vertices of a parallelogram, then

Options

  • a = 2, b = 0

  • a = −2, b = 0

  • a = −2, b = 6

  • a = 6, b = 2

  • None of these

MCQ

Solution

Let ABCD be a parallelogram in which the co-ordinates of the vertices are A (−1, 2);

B (2,−1) and C (3, 1). We have to find the co-ordinates of the fourth vertex.

Let the fourth vertex be D (a, b) 

Since ABCD is a parallelogram, the diagonals bisect each other. Therefore the mid-point of the diagonals of the parallelogram will coincide.

Now to find the mid-point P(x , y)  of two points  A(x1 , y1)  and  B (x2 , y2 ) we use section formula as,

`"P" ( x , "y" ) = ((x_1 + x_2 ) / 2 , ("y"_1 + "y"_2 ) / 2)`

The mid-point of the diagonals of the parallelogram will coincide.

So,

Co-ordinate of mid-point of AC = Co-ordinate of mid-point of BD 

Therefore,

`((3-1)/2, (2+1)/2 )= ( ("a" +2 ) /2, ("b" - 1 )/2)`

`(("a" + 2 )/2,("b" - 1)/2) = (1,3/2)`

Now equate the individual terms to get the unknown value. So,

`("a" + 2 )/2 = 1`

           a = 0

Similarly,

`("b"-1)/2 = 3/2`

        b  =  4

So the fourth vertex is  D (0, 4) 

3rd case: C and B are opposite corners of a diagonal.

Now, mid-point of CB is `(5/2, 0)`

Mid-point of AD is `(("a"-1)/2,("b"+2)/2)`

⇒ `("a"-1)/2=5/2,("b"+2)/2=0`

⇒ a = 6, b = -2

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Co-Ordinate Geometry - Exercise 6.7 [Page 64]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 6 Co-Ordinate Geometry
Exercise 6.7 | Q 12 | Page 64

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

How will you describe the position of a table lamp on your study table to another person?


Prove that the points (−2, 5), (0, 1) and (2, −3)  are collinear.


If two opposite vertices of a square are (5, 4) and (1, −6), find the coordinates of its remaining two vertices.


A (3, 2) and B (−2, 1)  are two vertices of a triangle ABC whose centroid G has the coordinates `(5/3,-1/3)`Find the coordinates of the third vertex C of the triangle.


Find the points of trisection of the line segment joining the points:

(3, -2) and (-3, -4)


Find the ratio in which the line segment joining (-2, -3) and (5, 6) is divided by x-axis Also, find the coordinates of the point of division in each case.


If A and B are (1, 4) and (5, 2) respectively, find the coordinates of P when AP/BP = 3/4.


Find the points on the x-axis, each of which is at a distance of 10 units from the point A(11, –8).


If  p(x , y)  is point equidistant from the points A(6, -1)  and B(2,3) A , show that x – y = 3


Point A lies on the line segment PQ joining P(6, -6) and Q(-4, -1) in such a way that `(PA)/( PQ)=2/5` . If that point A also lies on the line 3x + k( y + 1 ) = 0, find the value of k.


If the points P (a,-11) , Q (5,b) ,R (2,15)  and S (1,1). are the vertices of a parallelogram PQRS, find the values of a and b.


The base QR of a n equilateral triangle PQR lies on x-axis. The coordinates of the point Q are (-4, 0) and origin is the midpoint of the base. Find the coordinates of the points P and R.


Find the coordinates of the points of trisection of the line segment joining the points (3, –2) and (–3, –4) ?


Show that the points (−2, 3), (8, 3) and (6, 7) are the vertices of a right triangle ?


Show that A(-4, -7), B(-1, 2), C(8, 5) and D(5, -4) are the vertices of a
rhombus ABCD.


The distance between the points (a cos θ + b sin θ, 0) and (0, a sin θ − b cos θ) is


 The ratio in which the x-axis divides the segment joining (3, 6) and (12, −3) is


If the line segment joining the points (3, −4), and (1, 2) is trisected at points P (a, −2) and Q \[\left( \frac{5}{3}, b \right)\] , Then,

 


Which of the points P(0, 3), Q(1, 0), R(0, –1), S(–5, 0), T(1, 2) do not lie on the x-axis?


Statement A (Assertion): If the coordinates of the mid-points of the sides AB and AC of ∆ABC are D(3, 5) and E(–3, –3) respectively, then BC = 20 units.

Statement R (Reason): The line joining the mid-points of two sides of a triangle is parallel to the third side and equal to half of it.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×