English

If θ1, θ2, θ3, ..., θn are in A.P., whose common difference is d, show that secθ1 secθ2 + secθ2 secθ3 + ... + secθn–1 . secθn = tanθn-tanθ1sind - Mathematics

Advertisements
Advertisements

Question

If θ1, θ2, θ3, ..., θn are in A.P., whose common difference is d, show that secθ1 secθ2 + secθ2 secθ3 + ... + secθn–1 . secθn = `(tan theta_n - tan theta_1)/sin d`

Sum

Solution

Since θ1, θ2, θ3, ..., θn are in A.P.

∴ θ2 – θ1 = θ3 – θ2 = ... = θn – θn-1  = d

Now we have to prove that

secθ1 secθ2 + secθ2 secθ3 + ... + secθn–1 . secθn = `(tan theta_n - tan theta_1)/sind`  L.H.S.

⇒ `sin d/sin d [sec theta_1 * sec theta_2 + sec theta_2 sec theta_3 + ... + sec theta_(n - 1) *  sec theta_n]`

Taking only `(sind[sec theta_1 * sec theta_2])/sind = (sind[1/cos theta_1 * 1/cos theta_2])/sind`

= `(sin(theta_2 - theta_1))/sind * 1/(costheta_1 costheta_2)`

= `1/sind [(sin theta_2 cos theta_1 - cos theta_2 sin theta_1)/(cos theta_1 cos theta_2)]`

= `1/sind [(sin theta_2 cos theta_1)/(cos theta_1 cos theta_2) - (cos theta_2 sin theta_1)/(cos theta_1 cos theta_2)]`

= `1/sind [tan theta_2 - tan theta_1]`

Similarly we can solve other terms which will be

`1/sind [tan theta_3 - tan theta_2]`

And `1/sind [tan theta_4 - tan theta_3]`

Here L.H.S. = `1/sind [tan theta_2 - tan theta_1 + tan theta_3 - tan theta_2 + ... + tan theta_n - tan theta_(n - 1)]`

= `1/sind [- tan theta_1 + tan theta_n]`

= `(tan theta_n - tan theta_1)/sind`  R.H.S.

L.H.S. = R.H.S.

Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Sequences and Series - Exercise [Page 162]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 9 Sequences and Series
Exercise | Q 14 | Page 162
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×