English

If → a = 3 ^ I − ^ J − 4 ^ K , → B = − 2 ^ I + 4 ^ J − 3 ^ K and → C = ^ I + 2 ^ J − ^ K , Find ∣ ∣ 3 → a − 2 → B + 4 → C ∣ ∣ . - Mathematics

Advertisements
Advertisements

Question

\[\text{ If } \overrightarrow{a} = 3 \hat{i} - \hat{j} - 4 \hat{k} , \overrightarrow{b} = - 2 \hat{i} + 4 \hat{j} - 3 \hat{k} \text{ and }\overrightarrow{c} = \hat{i} + 2 \hat{j} - \hat{k} ,\text{ find }\left| 3 \overrightarrow{a} - 2 \overrightarrow{b} + 4 \overrightarrow{c} \right| .\]
Sum

Solution

Given  \[\overrightarrow{a} = 3 \hat{i} - \hat{j} - 4 \hat{k} , \overrightarrow{b} = - 2 \hat{i} + 4 \hat{j} - 3 \hat{k}, \overrightarrow{c} = \hat{i} + 2 \hat{j} - \hat{k}\]
Now,
\[3 \overrightarrow{a} - 2 \overrightarrow{b} + 4 \overrightarrow{c} = 3\left( 3 \hat{i} - \hat{j} - 4 \hat{k} \right) - 2\left( - 2 \hat{i} + 4 \hat{j} - 3 \hat{k} \right) + 4\left( \hat{i} + 2 \hat{j} - \hat{k} \right)\]
\[9 \hat{i} - 3 \hat{j} - 12 \hat{k} + 4 \hat{i} - 8 \hat{j} + 6 \hat{k} + 4 \hat{i} + 8 \hat{j} - 4 \hat{k}\]
\[17 \hat{i} - 3 \hat{j} - 10 \hat{k}\]
∴\[\left| 3 \overrightarrow{a} - 2 \overrightarrow{b} + 4 \overrightarrow{c} \right| = \sqrt{{17}^2 + \left( - 3 \right)^2 + \left( - 10 \right)^2} = \sqrt{289 + 9 + 100} = \sqrt{398}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 23: Algebra of Vectors - Very Short Answers [Page 76]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 23 Algebra of Vectors
Very Short Answers | Q 27 | Page 76

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

If \[\overrightarrow{a}\] and \[\overrightarrow{b}\] denote the position vectors of points A and B respectively and C is a point on AB such that 3AC = 2AB, then write the position vector of C.


If \[\overrightarrow{a}\] is a non-zero vector of modulus a and m is a non-zero scalar such that m \[\overrightarrow{a}\] is a unit vector, write the value of m.


Write the position vector of a point dividing the line segment joining points having position vectors \[\hat{i} + \hat{j} - 2 \hat{k} \text{ and }2 \hat{i} - \hat{j} + 3 \hat{k}\] externally in the ratio 2:3.


If \[\overrightarrow{a} = x \hat{i} + 2 \hat{j} - z \hat{k}\text{ and }\overrightarrow{b} = 3 \hat{i} - y \hat{j} + \hat{k}\]  are two equal vectors, then write the value of x + y + z.


If points A (60 \[\hat{i}\] + 3 \[\hat{j}\]), B (40 \[\hat{i}\] − 8 \[\hat{j}\]) and C (a \[\hat{i}\] − 52 \[\hat{j}\]) are collinear, then a is equal to


Let G be the centroid of ∆ ABC. If \[\overrightarrow{AB} = \vec{a,} \overrightarrow{AC} = \vec{b,}\] then the bisector \[\overrightarrow{AG} ,\] in terms of \[\vec{a}\text{ and }\vec{b}\] is


The position vectors of the points ABC are \[2 \hat{i} + \hat{j} - \hat{k} , 3 \hat{i} - 2 \hat{j} + \hat{k}\text{ and }\hat{i} + 4 \hat{j} - 3 \hat{k}\] respectively.
These points


Find the components along the coordinate axes of the position vector of the following point :

P(3, 2)


Find the components along the coordinate axes of the position vector of the following point :

Q(–5, 1)


Find the components along the coordinate axes of the position vector of the following point :

R(–11, –9)


Find a vector in the direction of `bara = hati - 2hatj` that has magnitude 7 units.


If `|bara|` = 3, `|barb|` = 5, `|barc|` = 7 and `bara + barb + barc = bar0`, then the angle between `bara` and `barb` is ______.


Let `bara = hati - hatj, barb = hatj - hatk, barc = hatk - hati.` If `bard` is a unit vector such that `bara * bard = 0 = [(barb, barc, bard)]`, then `bard` equals ______.


Find the component form of `bar"a"` if it lies in YZ-plane makes 60° with positive Y-axis and `|bar"a"| = 4`.


Express `hat"i" + 4hat"j" - 4hat"k"` as the linear combination of the vectors `2hat"i" - hat"j" + 3hat"k", hat"i" - 2hat"j" + 4hat"k"` and `- hat"i" + 3hat"j" - 5hat"k"`.


State whether the expression is meaningful. If not, explain why? If so, state whether it is a vector or a scalar:

`(bar"a".bar"b") xx (bar"c".bar"d")`


State whether the expression is meaningful. If not, explain why? If so, state whether it is a vector or a scalar:

`(bar"a" xx bar"b").(bar"c"xxbar"d")`


For any vectors `bar"a", bar"b", bar"c"` show that `(bar"a" + bar"b" + bar"c") xx bar"c" + (bar"a" + bar"b" + bar"c") xx bar"b" + (bar"b" - bar"c") xx bar"a" = 2bar"a" xx bar"c"`


Find the volume of the parallelopiped spanned by the diagonals of the three faces of a cube of side a that meet at one vertex of the cube.


If `bar"a", bar"b", bar"c"` are three non-coplanar vectors show that `(bar"a".(bar"b" xx bar"c"))/((bar"c" xx bar"a").bar"b") + (bar"b".(bar"a" xx bar"c"))/((bar"c" xx bar"a").bar"b") = 0`


The vector eqliation of line 2x - 2 = 3y + 1 = 6z - 2 is


For any non zero vector, a, b, c a · ((b + c) × (a + b + c)] = ______.


If the points (–1, –1, 2), (2, m, 5) and (3,11, 6) are collinear, find the value of m.


The area of the parallelogram whose adjacent sides are `hat"i" + hat"k"` and `2hat"i" + hat"j" + hat"k"` is ______.


If `vec"a" = hat"i" + hat"j" + 2hat"k"` and `hat"b" = 2hat"i" + hat"j" - 2hat"k"`, find the unit vector in the direction of `2vec"a" - vec"b"`


The vector `vec"a" + vec"b"` bisects the angle between the non-collinear vectors `vec"a"` and `vec"b"` if ______.


If `vec"r" * vec"a" = 0, vec"r" * vec"b" = 0` and `vec"r" * vec"c" = 0` for some non-zero vector `vec"r"`, then the value of `vec"a" * (vec"b" xx vec"c")` is ______.


The values of k for which `|"k"vec"a"| < |vec"a"|` and `"k"vec"a" + 1/2 vec"a"` is parallel to `vec"a"` holds true are ______.


Classify the following measures as scalar and vector.

40 watt


Classify the following measures as scalar and vector.

20 m/s2


Classify the following as scalar and vector quantity.

Velocity


Classify the following as scalar and vector quantity.

Work done


lf ΔABC is an equilateral triangle and length of each side is “a” units, then the value of `bar(AB)*bar(BC) + bar(BC)*bar(CA) + bar(CA)*bar(AB)` is ______.


In the triangle PQR, `bar(PQ)` = 2`bara` and `bar(QR)` = 2`barb`. The mid-point of PR is M. Find following vectors in terms of `bara` and `barb`.

  1. `bar(PR)`
  2. `bar(PM)`
  3. `bar(QM)`

Evaluate the following.

`int x^3/(sqrt1 + x^4) `dx


Check whether the vectors `2hati + 2hatj + 3hatk, -3hati + 3hatj + 2hatk and 3hati + 4hatk`  form a triangle or not. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×