English

If aijka→=i^+j^+2k^ and bijkb^=2i^+j^-2k^, find the unit vector in the direction of ab2a→-b→ - Mathematics

Advertisements
Advertisements

Question

If `vec"a" = hat"i" + hat"j" + 2hat"k"` and `hat"b" = 2hat"i" + hat"j" - 2hat"k"`, find the unit vector in the direction of `2vec"a" - vec"b"`

Sum

Solution

Given that `vec"a" = hat"i" + hat"j" + 2hat"k"` and `hat"b" = 2hat"i" + hat"j" - 2hat"k"`

`2vec"a" - vec"b" = 2(hat"i" + hat"j" + 2hat"k") - (2hat"i" + hat"j" - 2hat"k")`

= `2hat"i" + 2hat"j" + 4hat"k" - 2hat"i" - hat"j" + 2hat"k"`

= `hat"j" + 6hat"k"`

∴ Unit vector in the direction of `2vec"a" - vec"b"`

= `(2vec"a" - vec"b")/|2vec"a" - vec"b"|`

= `(hat"j" + 6hat"k")/sqrt((1)^2 + (6)^2)`

= `(hat"j" + 6hat"k")/sqrt(1 + 36)`

= `(hat"j" + 6hat"k")/sqrt(37)`

= `1/sqrt(37) [hat"j" + 6hat"k"]`

Hence, the required unit vector is `1/sqrt(37) [hat"j" + 6hat"k"]`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Vector Algebra - Exercise [Page 215]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 10 Vector Algebra
Exercise | Q 2.(ii) | Page 215

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

if `veca = 2hati - hatj - 2hatk " and " vecb = 7hati + 2hatj - 3hatk`, , then express `vecb` in the form of `vecb = vec(b_1) + vec(b_2)`, where `vec(b_1)`  is parallel to `veca` and `vec(b_2)` is perpendicular to `veca`


If \[\vec{a}\], \[\vec{b}\], \[\vec{c}\] represent the sides of a triangle taken in order, then write the value of \[\vec{a} + \vec{b} + \vec{c} .\]


For what value of 'a' the vectors \[2 \hat{i} - 3 \hat{j} + 4 \hat{k} \text{ and }a \hat{i} + 6 \hat{j} - 8 \hat{k}\]  are collinear?


The vector equation of the plane passing through \[\vec{a} , \vec{b} , \vec{c} ,\text{ is }\vec{r} = \alpha \vec{a} + \beta \vec{b} + \gamma \vec{c} ,\] provided that

 


If three points A, B and C have position vectors \[\hat{i} + x \hat{j} + 3 \hat{k} , 3 \hat{i} + 4 \hat{j} + 7 \hat{k}\text{ and }y \hat{i} - 2 \hat{j} - 5 \hat{k}\] respectively are collinear, then (x, y) =


Find the position vector of the mid-point of the vector joining the points

\[P \left( 2 \hat{i} - 3\hat{ j} + 4 \hat{k} \right)\text{ and } Q \left( 4 \hat{i} + \hat{j} - 2 \hat{k} \right) .\]

In the triangle PQR, `bar"PQ" = bar"2a", bar"QR" = bar"2b"`. The midpoint of PR is M. Find the following vectors in terms of `bar"a"` and `bar"b"`:

(i) `bar"PR"` (ii) `bar"PM"` (iii) `bar"QM"`.


OABCDE is a regular hexagon. The points A and B have position vectors `bar"a"` and `bar"b"` respectively referred to the origin O. Find, in terms of `bar"a"` and `bar"b"` the position vectors of C, D and E.


Find a vector in the direction of `bara = hati - 2hatj` that has magnitude 7 units.


If `|bara|` = 3, `|barb|` = 5, `|barc|` = 7 and `bara + barb + barc = bar0`, then the angle between `bara` and `barb` is ______.


Select the correct option from the given alternatives:

If l, m, n are direction cosines of a line then `"l"hat
"i" + "m"hat"j" + "n"hat"k"` is ______ 


Find the unit vectors that are parallel to the tangent line to the parabola y = x2 at the point (2, 4).


State whether the expression is meaningful. If not, explain why? If so, state whether it is a vector or a scalar:

`bar"a".(bar"b".bar"c")`


State whether the expression is meaningful. If not, explain why? If so, state whether it is a vector or a scalar:

`(bar"a".bar"b") xx (bar"c".bar"d")`


State whether the expression is meaningful. If not, explain why? If so, state whether it is a vector or a scalar:

`bar"a". bar"b" + bar"c"`


If A, B, C and D are (3, 7, 4), (5, -2, - 3), (- 4, 5, 6) and(1, 2, 3) respectively, then the volume of the parallelopiped with AB, AC and AD as the co-terminus edges, is ______ cubic units.


For any non zero vector, a, b, c a · ((b + c) × (a + b + c)] = ______.


Find the unit vector in the direction of the sum of the vectors `vec"a" = 2hat"i" - hat"j" + 2hat"k"` and `vec"b" = -hat"i" + hat"j" + 3hat"k"`.


Find a vector `vec"r"` of magnitude `3sqrt(2)` units which makes an angle of `pi/4` and `pi/2` with y and z-axes, respectively.


If `vec"a" = 2hat"i" - hat"j" + hat"k", vec"b" = hat"i" + hat"j" - 2hat"k"` and `vec"c" = hat"i" + 3hat"j" - hat"k"`, find `lambda` such that `vec"a"` is perpendicular to `lambdavec"b" + vec"c"`.


Using vectors, prove that cos (A – B) = cosA cosB + sinA sinB.


The vector with initial point P (2, –3, 5) and terminal point Q(3, –4, 7) is ______.


If `|vec"a"|` = 3 and –1 ≤ k ≤ 2, then `|"k"vec"a"|` lies in the interval ______.


If `vec"a" = hat"i" + hat"j" + 2hat"k"` and `vec"b" = 2hat"i" + hat"j" - 2hat"k"`, find the unit vector in the direction of `6vec"b"`


If `|vec"a" + vec"b"| = |vec"a" - vec"b"|`, then the vectors `vec"a"` and `vec"b"` are orthogonal.


If `vec"a"` and `vec"b"` are adjacent sides of a rhombus, then `vec"a" * vec"b"` = 0


In Figure, identify the following vector.

Equal


Let the vectors `vec(a)` such `vec(b)` that `|veca|` = 3 and `|vecb| = sqrt(2)/3`, then `veca xx vecb` is a unit vector if the angle between `veca` and `vecb` is


If `hata` is unit vector and `(2vecx - 3hata)*(2vecx + 3hata)` = 91, find the value of `|vecx|`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×