Advertisements
Advertisements
Question
If `A^-1=1/3[[1,4,-2],[-2,-5,4],[1,-2,1]]` and | A | = 3, then (adj. A) = _______
Options
`1/9[[1,4,-2],[-2,-5,4],[1,-2,1]]`
`[[1,-2,1],[4,-5,-2],[-2,4,1]]`
`[[1,4,-2],[-2,-5,4],[1,-2,1]]`
`[[-1,-4,2],[2,5,-4],[1,-2,1]]`
MCQ
Solution
(C)
`A^-1=1/|A|(adjA)`
`1/3[[1,4,-2],[-2,-5,4],[1,-2,1]]=1/3(adjA)`
`(adjA)=[[1,4,-2],[-2,-5,4],[1,-2,1]]`
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
If `A=[[2,-2],[4,3]]` then find `A^-1` by adjoint method.
`A=[[1,2],[3,4]]` ans A(Adj A)=KI, then the value of 'K' is
If `A=[[1,-1,2],[3,0,-2],[1,0,3]]` verify that A (adj A) = |A| I.
If `A =[[2,-3],[3,5]]` then find A-1 by adjoint method.
If A = `[(2,-3),(4,1)]`, then adjoint of matrix A is
(A) `[(1,3),(-4,2)]`
(B) `[(1,-3),(-4,2)]`
(C) `[(1,3),(4,-2)]`
(D) `[(-1,-3),(-4,2)]`