Advertisements
Advertisements
Question
If `A=[[2,-2],[4,3]]` then find `A^-1` by adjoint method.
Solution
Given :`A==[[2,-2],[4,3]]`
`|A|=|[2,-2],[4,3]|=6+8=14ne0`
`therefore A^-1 " exist"`
`M_11=3 A_11=(-1)^2 3=3`
`M_12=4 A_11=(-1)^3 3=-4`
`M_21=-2 A_11=(-1)^3 (-2)=2`
`M_22=2 A_11=(-1)^2 3=2`
`Adj. (A)=[[A_11,A_12],[A_21,A_22]]=[[3,-4],[2,2]]`
`=[[3,2],[-4,2]]`
`therefore A^-1=(Adj(A))/|A|`
`=1/14[[3,2],[-4,2]]`
APPEARS IN
RELATED QUESTIONS
If `A^-1=1/3[[1,4,-2],[-2,-5,4],[1,-2,1]]` and | A | = 3, then (adj. A) = _______
`A=[[1,2],[3,4]]` ans A(Adj A)=KI, then the value of 'K' is
If `A=[[1,-1,2],[3,0,-2],[1,0,3]]` verify that A (adj A) = |A| I.
If `A =[[2,-3],[3,5]]` then find A-1 by adjoint method.
If A = `[(2,-3),(4,1)]`, then adjoint of matrix A is
(A) `[(1,3),(-4,2)]`
(B) `[(1,-3),(-4,2)]`
(C) `[(1,3),(4,-2)]`
(D) `[(-1,-3),(-4,2)]`