Advertisements
Advertisements
Question
If a + b + c = 9 and ab + bc + ca = 40, find a2 + b2 +c2.
Solution
Recall the formula
`(a+b+c)^2 = a^2 +b^2 +c^2 +2(ab +bc+ca)`
Given that
`(a+b+c) = 9,ab + bc + ca = 40`,
Then we have
`(a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca)`
` ( 9)^2 = a^2 + b^2 + c^2 + 2.( 40) `
`a^2 ++ b^2 + c^2 + 80 = 81`
`a^2 + b^2 + c^2 = 81 - 80
`a^2 + b^2 +c^2 =` 1
APPEARS IN
RELATED QUESTIONS
Factorize: `a^2 x^2 + (ax^2 + 1)x + a`
Given possible expressions for the length and breadth of the rectangle having 35y2 + 13y – 12 as its area.
Factorize `8/27 x^3 + 1 + 4/3 x^2 + 2x`
Factorize x3 + 8y3 + 6x2 y +12xy2
Multiply: x2 + 4y2 + 2xy − 3x + 6y + 9 by x − 2y + 3
If a2 + b2 + c2 = 20 and a + b + c = 0, find ab + bc + ca.
If (x + y)3 − (x − y)3 − 6y(x2 − y2) = ky2, then k =
Multiply: (6x - 2y)(3x - y)
Multiply: (1 + 6x2 - 4x3)(-1 + 3x - 3x2)
Which of the following is correct?