Advertisements
Advertisements
Question
If f : R → R is defined by f(x) = 3x − 5, prove that f is a bijection and find its inverse
Solution
Given f(x) = 3x – 5
Let y = 3x – 5
y + 5 = 3x
⇒ `(y + 5)/3` = x
Let g(y) = `(y + 5)/3`
gof(x) = g(f(x))
= g(3x – 5)
= `(3x - 5 + 5)/3`
= `(3x)/5`
= x
gof(x) = x
fog(y) = f(g(y))
= `f((y + 5)/3)`
= `3((y + 5)/3) - 5`
= y + 5 – 5
fog(y) = y
∴ gof = Ix and fog = IY
Hence f and g are bijections and inverses to each other.
Hence f is a bijection and f-1(y) = `(y + 5)/3`
Replacing y by x we get f-1(x) = `(x + 5)/3`
APPEARS IN
RELATED QUESTIONS
Suppose that 120 students are studying in 4 sections of eleventh standard in a school. Let A denote the set of students and B denote the set of the sections. Define a relation from A to B as “x related to y if the student x belongs to the section y”. Is this relation a function? What can you say about the inverse relation? Explain your answer
Write the values of f at − 4, 1, −2, 7, 0 if
f(x) = `{{:(- x + 4, "if" - ∞ < x ≤ - 3),(x + 4, "if" - 3 < x < -2),(x^2 - x, "if" - 2 ≤ x < 1),(x - x^2, "if" 1 ≤ x < 7),(0, "otherwise"):}`
Let A = {1, 2, 3, 4} and B = {a, b, c, d}. Give a function from A → B of the following:
one-to-one but not onto
Let A = {1, 2, 3, 4} and B = {a, b, c, d}. Give a function from A → B of the following:
one-to-one and onto
Find the largest possible domain of the real valued function f(x) = `sqrt(4 - x^2)/sqrt(x^2 - 9)`
If f, g, h are real valued functions defined on R, then prove that (f + g) o h = f o h + g o h. What can you say about f o (g + h)? Justify your answer
The weight of the muscles of a man is a function of his body weight x and can be expressed as W(x) = 0.35x. Determine the domain of this function
The distance of an object falling is a function of time t and can be expressed as s(t) = −16t2. Graph the function and determine if it is one-to-one.
The total cost of airfare on a given route is comprised of the base cost C and the fuel surcharge S in rupee. Both C and S are functions of the mileage m; C(m) = 0.4 m + 50 and S(m) = 0.03 m. Determine a function for the total cost of a ticket in terms of the mileage and find the airfare for flying 1600 miles
A salesperson whose annual earnings can be represented by the function A(x) = 30,000 + 0.04x, where x is the rupee value of the merchandise he sells. His son is also in sales and his earnings are represented by the function S(x) = 25,000 + 0.05x. Find (A + S)(x) and determine the total family income if they each sell Rupees 1,50,00,000 worth of merchandise
Choose the correct alternative:
If f(x) = |x − 2| + |x + 2|, x ∈ R, then
Choose the correct alternative:
The range of the function `1/(1 - 2 sin x)` is
Choose the correct alternative:
The range of the function f(x) = |[x] − x|, x ∈ R is
Choose the correct alternative:
If the function f : [−3, 3] → S defined by f(x) = x2 is onto, then S is
Choose the correct alternative:
Let X = {1, 2, 3, 4}, Y = {a, b, c, d} and f = {(1, a), (4, b), (2, c), (3, d), (2, d)}. Then f is
Choose the correct alternative:
The function f : R → R is defined by f(x) = sin x + cos x is