Advertisements
Advertisements
Question
If f(x) = 3x + 5, g(x) = 6x − 1, then find (f - g) (2).
Sum
Solution
(f – g) (2) = f(2) – g(2)
= [3 (2) + 5] – [6 (2) – 1]
= (6 + 5) – (12 - 1)
= 11 - 11
= 0
shaalaa.com
Fundamental Functions
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
If f(x) = 3x + 5, `"g"(x)` = 6x − 1, then find `("f" + "g") (x)`
If f(x) = 3x + 5, g(x) = 6x − 1, then find (fg) (3)
If f(x) = 3x + 5, g(x) = 6x – 1, then find `("f"/"g")`(x) and its domain.
If f(x) = 2x2 + 3, g(x) = 5x − 2, then find fog.
If f(x) = 2x2 + 3, g(x) = 5x − 2, then find gof.
If f(x) = 2x2 + 3, g(x) = 5x – 2, then find fof.
If f(x) = 3x2 − 5x + 7 find f(x − 1).