Advertisements
Advertisements
Question
If f(x) = 3x + 5, g(x) = 6x – 1, then find `("f"/"g")`(x) and its domain.
Sum
Solution
`("f"/"g") x = ("f"(x))/("g"(x))`
= `(3x+5)/(6x-1), x≠1/6`
Domain = R – `{1/6}`
shaalaa.com
Fundamental Functions
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
If f(x) = 3x + 5, `"g"(x)` = 6x − 1, then find `("f" + "g") (x)`
If f(x) = 3x + 5, g(x) = 6x − 1, then find (f - g) (2).
If f(x) = 3x + 5, g(x) = 6x − 1, then find (fg) (3)
If f(x) = 2x2 + 3, g(x) = 5x − 2, then find fog.
If f(x) = 2x2 + 3, g(x) = 5x − 2, then find gof.
If f(x) = 2x2 + 3, g(x) = 5x – 2, then find fof.
If f(x) = 3x2 − 5x + 7 find f(x − 1).