Advertisements
Advertisements
Question
If the latus-rectum through one focus of a hyperbola subtends a right angle at the farther vertex, then write the eccentricity of the hyperbola.
Solution
The standard equation of hyperbola is given below:
\[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\]
Let the latus rectum be QR, which passes through one of the focus. QR subtends a right angle at point P.
It passes through the focus \[\left( ae, \pm y \right)\].
\[\therefore \frac{\left( ae \right)^2}{a^2} - \frac{y^2}{b^2} = 1\]
\[ \Rightarrow \frac{y^2}{b^2} = \frac{\left( ae \right)^2}{a^2} - 1\]
\[ \Rightarrow \frac{y^2}{b^2} = e^2 - 1\]
\[ \Rightarrow y = \pm b\sqrt{e^2 - 1}\]
Now, the slope of PQ is \[\frac{b\sqrt{e^2 - 1}}{ae + a}\] and the slope of PR is \[- \frac{b\sqrt{e^2 - 1}}{ae + a}\].
The lines PQ and PR are perpendicular, so the product of the slope is \[- 1\].
\[\Rightarrow \frac{b\sqrt{e^2 - 1}}{ae + a} \times \frac{- b\sqrt{e^2 - 1}}{ae + a} = - 1\]
\[ \Rightarrow b^2 \left( e^2 - 1 \right) = \left( ae + a \right)^2 \]
\[ \Rightarrow b^2 \left( e^2 - 1 \right) = a^2 \left( e + 1 \right)^2 \]
\[ \Rightarrow \left( e^2 - 1 \right)^2 = \left( e + 1 \right)^2 \]
\[ \Rightarrow e^4 - 2 e^2 + 1 = e^2 + 2e + 1\]
\[ \Rightarrow e^4 - 3 e^2 - 2e = 0\]
\[ \Rightarrow e\left( e^3 - 3e - 2 \right) = 0\]
\[ \Rightarrow e\left( e - 2 \right)\left( e + 1 \right)\left( e + 1 \right) = 0\]
∴ \[e = 0, - 1, 2\]
The value of e can neither be negative nor zero.
Therefore, the value of eccentricity is 2.
APPEARS IN
RELATED QUESTIONS
Find the equation of the hyperbola satisfying the given conditions:
Foci (±4, 0), the latus rectum is of length 12.
Find the equation of the hyperbola satisfying the given conditions:
Vertices (±7, 0), e = `4/3`
Find the axes, eccentricity, latus-rectum and the coordinates of the foci of the hyperbola 25x2 − 36y2 = 225.
Find the equation of the hyperbola satisfying the given condition :
foci (± \[3\sqrt{5}\] 0), the latus-rectum = 8
find the equation of the hyperbola satisfying the given condition:
foci (± \[3\sqrt{5}\] 0), the latus-rectum = 8
find the equation of the hyperbola satisfying the given condition:
foci (0, ± 12), latus-rectum = 36
Write the eccentricity of the hyperbola whose latus-rectum is half of its transverse axis.
Write the length of the latus-rectum of the hyperbola 16x2 − 9y2 = 144.
The latus-rectum of the hyperbola 16x2 − 9y2 = 144 is