English

Write the Length of the Latus-rectum of the Hyperbola 16x2 − 9y2 = 144. - Mathematics

Advertisements
Advertisements

Question

Write the length of the latus-rectum of the hyperbola 16x2 − 9y2 = 144.

Answer in Brief

Solution

Equation of the hyperbola:

\[16 x^2 - 9 y^2 = 144\]

This equation can be rewritten in the following way:

\[\frac{16 x^2}{144} - \frac{9 y^2}{144} = 1\]

\[ \Rightarrow \frac{x^2}{9} - \frac{y^2}{16} = 1\]

\[ \Rightarrow \frac{x^2}{3^2} - \frac{y^2}{4^2} = 1\]

This is the standard form of a hyperbola with \[a = 3\] and \[b = 4\].

Length of the latus rectum = \[\frac{2 b^2}{a}\]

Substituting the value of a and b, we get:
Length of the ​latus rectum  \[= \frac{2 \times 4^2}{3} = \frac{32}{3}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 27: Hyperbola - Exercise 27.2 [Page 18]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 27 Hyperbola
Exercise 27.2 | Q 6 | Page 18
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×