English

If the Point C (–1, 2) Divides Internally the Line-segment Joining the Points a (2, 5) and B (X, Y) in the Ratio 3 : 4, Find the Value Of X2 + Y2 ? - Mathematics

Advertisements
Advertisements

Question

If the point C (–1, 2) divides internally the line-segment joining the points A (2, 5) and B (xy) in the ratio 3 : 4, find the value of x2 + y2 ?

Solution

It is given that the point C(–1, 2) divides the line segment joining the points A(2, 5) and B(xy) in the ratio 3 : 4 internally.

Using the section formula, we get

\[\left( - 1, 2 \right) = \left( \frac{3 \times x + 4 \times 2}{3 + 4}, \frac{3 \times y + 4 \times 5}{3 + 4} \right)\]
\[ \Rightarrow \left( - 1, 2 \right) = \left( \frac{3x + 8}{7}, \frac{3y + 20}{7} \right)\]
\[ \Rightarrow \frac{3x + 8}{7} = - 1\ \text{and} \frac{3y + 20}{7} = 2\]
⇒ 3x + 8 = –7 and 3y + 20 = 14
⇒ 3x = –15 and 3y = –6
⇒ x = –5 and y = –2
∴ x2 + y2 = 25 + 4 = 29
Hence, the value of x2 + y2 is 29.
shaalaa.com
  Is there an error in this question or solution?
2015-2016 (March) Foreign Set 1

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×