Advertisements
Advertisements
Question
If the points p (x , y) is point equidistant from the points A (5,1)and B ( -1,5) , Prove that 3x=2y
Solution
As per the question, we have
AP = BP
`⇒ sqrt((x -5)^2 +(y-1)^2) = sqrt((x+1)^2 +(y-5)^2)`
`⇒(x-5)^2 +(y-1)^2 = (x+1)^2 +(y-5)^2` (Squaring both sides)
`⇒x^2 - 10x +25 + y^2 -2y +1 = x^2 +2x +1+y^2 -10y+25`
⇒ - 10x -2y =2x-10y
⇒ 8y = 12x
⇒3x=2y
Hence, 3x=2y.
APPEARS IN
RELATED QUESTIONS
How will you describe the position of a table lamp on your study table to another person?
Find the centre of the circle passing through (5, -8), (2, -9) and (2, 1).
In Fig. 14.36, a right triangle BOA is given C is the mid-point of the hypotenuse AB. Show that it is equidistant from the vertices O, A and B.
We have a right angled triangle,`triangle BOA` right angled at O. Co-ordinates are B (0,2b); A (2a, 0) and C (0, 0).
Name the quadrilateral formed, if any, by the following points, and given reasons for your answers:
A(-1,-2) B(1, 0), C (-1, 2), D(-3, 0)
Find the points of trisection of the line segment joining the points:
(2, -2) and (-7, 4).
Show that the following points are the vertices of a square:
A (6,2), B(2,1), C(1,5) and D(5,6)
In what ratio does y-axis divide the line segment joining the points (-4, 7) and (3, -7)?
Find the ratio in which the point (−3, k) divides the line-segment joining the points (−5, −4) and (−2, 3). Also find the value of k ?
If `P(a/2,4)`is the mid-point of the line-segment joining the points A (−6, 5) and B(−2, 3), then the value of a is
Show that A(-4, -7), B(-1, 2), C(8, 5) and D(5, -4) are the vertices of a
rhombus ABCD.
If P ( 9a -2 , - b) divides the line segment joining A (3a + 1 , - 3 ) and B (8a, 5) in the ratio 3 : 1 , find the values of a and b .
If the point P (m, 3) lies on the line segment joining the points \[A\left( - \frac{2}{5}, 6 \right)\] and B (2, 8), find the value of m.
If P (x, 6) is the mid-point of the line segment joining A (6, 5) and B (4, y), find y.
The line segment joining points (−3, −4), and (1, −2) is divided by y-axis in the ratio.
If P is a point on x-axis such that its distance from the origin is 3 units, then the coordinates of a point Q on OY such that OP = OQ, are
If the points P (x, y) is equidistant from A (5, 1) and B (−1, 5), then
The coordinates of the circumcentre of the triangle formed by the points O (0, 0), A (a, 0 and B (0, b) are
Point (–10, 0) lies ______.
If the points P(1, 2), Q(0, 0) and R(x, y) are collinear, then find the relation between x and y.
Given points are P(1, 2), Q(0, 0) and R(x, y).
The given points are collinear, so the area of the triangle formed by them is `square`.
∴ `1/2 |x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)| = square`
`1/2 |1(square) + 0(square) + x(square)| = square`
`square + square + square` = 0
`square + square` = 0
`square = square`
Hence, the relation between x and y is `square`.
The distance of the point (3, 5) from x-axis (in units) is ______.