Advertisements
Advertisements
Question
If the roots of the equation `(a^2+b^2)x^2-2(ac+bd)x+(c^2+d^2)=0`are equal, prove that `a/b=c/d`
Solution
It is given that the roots of the equation `(a^2+b^2)x^2-2(ac+bd)x+(c^2+d^2)=0 are equal
∴`D=0`
⇒`[-2(ac+bd)]^2-4(a^2+b^2)(c^2+d^2)=0`
⇒`4(a^2c^2+b^2d^2+2abcd)-4(a^2c^2+a^2d^2+b^2c^2+b^2d^2)=0`
⇒`4(a^2c^2+b^2d^2+2abcd-a^2c^2-a^2d^2-b^2c^2-b^2d^2)=0`
⇒`(-a^2d^2+2abcd-b^2c^2)=0`
⇒`-(a^2d^2-2abcd+b^2c^2)=0`
⇒`(ad-bc)^2=0`
⇒`ad-bc=0`
⇒`ad=bc`
⇒`a/b=c/d`
Hence proved.
APPEARS IN
RELATED QUESTIONS
In the following, determine whether the given quadratic equation have real roots and if so, find the roots:
`2x^2-2sqrt2x+1=0`
`3x^2-243=0`
`25x^2+30x+7=0`
`3x^2-2x+2=0.b`
`x^2-2ax+(a^2-b^2)=0`
`a^2b^2x^2-(4b^4-3a^4)x-12a^2b^2=0,a≠0 and b≠ 0`
Find the nature of roots of the following quadratic equations:
` 3x^2-2sqrt6x+2=0`
Find the values of p for which the quadratic equation `(p+1)x^2-6(p+1)x+3(p+9)=0` `p≠-11`has equal roots. Hence find the roots of the equation.
If -5 is a root of the quadratic equation `2x^2+px-15=0` and the quadratic equation `p(x^2+x)+k=0` 0has equal roots, find the value of k.
Solve for x: \[\frac{1}{x - 3} - \frac{1}{x + 5} = \frac{1}{6}, x \neq 3, - 5\]