English

In a hostel, 60% of the students read Hindi newspaper, 40% read English newspaper and 20% read both Hindi and English news papers. A student is selected at random. - Mathematics

Advertisements
Advertisements

Question

In a hostel, 60% of the students read Hindi newspaper, 40% read English newspaper and 20% read both Hindi and English news papers. A student is selected at random.

If she reads English news paper, find the probability that she reads Hindi news paper.

Sum

Solution

Let H = the event of reading a Hindi newspaper,

E = event of reading an English newspaper

Then P(H)  = `60/100 = 3/5`, P(E) = `40/100 = 2/5`

and P(H ∩ E) = `20/100 = 1/5`

Process of desired event = P(H|E) = `(P(E ∩ H))/(P(E))`

= `(1/5)/(2/5)`

= `1/2`

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Probability - Exercise 13.2 [Page 548]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 13 Probability
Exercise 13.2 | Q 16.3 | Page 548

RELATED QUESTIONS

If A and B are events such that P (A|B) = P(B|A), then ______.


In a hostel, 60% of the students read Hindi newspaper, 40% read English newspaper and 20% read both Hindi and English news papers. A student is selected at random. 

Find the probability that she reads neither Hindi nor English news papers.


In a hostel, 60% of the students read Hindi newspaper, 40% read English newspaper and 20% read both Hindi and English news papers. A student is selected at random.

If she reads Hindi news paper, find the probability that she reads English news paper.


An electronic assembly consists of two subsystems, say, A and B. From previous testing procedures, the following probabilities are assumed to be known:

P(A fails) = 0.2

P(B fails alone) = 0.15

P(A and B fail) = 0.15

Evaluate the following probabilities

  1. P(A fails| B has failed)
  2. P(A fails alone)

Bag I contains 3 red and 4 black balls and Bag II contains 4 red and 5 black balls. One ball is transferred from Bag I to Bag II and then a ball is drawn from Bag II. The ball so drawn is found to be red in colour. Find the probability that the transferred ball is black.


If A and B are two events such that P (A) ≠ 0 and P(B|A) = 1, then ______.


A and B are two candidates seeking admission in a college. The probability that A is selected is 0.7 and the probability that exactly one of them is selected is 0.6. Find the probability that B is selected.


A committee of 4 students is selected at random from a group consisting 8 boys and 4 girls. Given that there is at least one girl on the committee, calculate the probability that there are exactly 2 girls on the committee.


A factory produces bulbs. The probability that anyone bulb is defective is `1/50` and they are packed in boxes of 10. From a single box, find the probability that exactly two bulbs are defective


A factory produces bulbs. The probability that anyone bulb is defective is `1/50` and they are packed in boxes of 10. From a single box, find the probability that more than 8 bulbs work properly


A shopkeeper sells three types of flower seeds A1, A2 and A3. They are sold as a mixture where the proportions are 4:4:2 respectively. The germination rates of the three types of seeds are 45%, 60% and 35%. Calculate the probability of a randomly chosen seed to germinate


A shopkeeper sells three types of flower seeds A1, A2 and A3. They are sold as a mixture where the proportions are 4:4:2 respectively. The germination rates of the three types of seeds are 45%, 60% and 35%. Calculate the probability that it will not germinate given that the seed is of type A3 


If P(B) = `3/5`, P(A|B) = `1/2` and P(A∪ B) = `4/5`, then P(A∪ B)′ + P( A′ ∪ B) = ______.


Let P(A) = `7/13`, P(B) = `9/13` and P(A ∩ B) = `4/13`. Then P( A′|B) is equal to ______.


Three persons, A, B and C, fire at a target in turn, starting with A. Their probability of hitting the target are 0.4, 0.3 and 0.2 respectively. The probability of two hits is ______.


The probability of guessing correctly at least 8 out of 10 answers on a true-false type-examination is ______.


If A and B are such that P(A' ∪ B') = `2/3` and P(A ∪ B) = `5/9` then P(A') + P(B') = ______.


If 0 < P(A) < 1, 0 < P(B) < 1 and P(A ∪ B) = P(A) + P(B) – P(A)P(B), then 


If 'A' and 'B' are events such that `P(A/B) = P(B/A)` then:-


The probability that a student is not swimmer is `1/5`, Then he probability that out of five students, for are swimmers is


If 'A' and 'B' are two events, such that P(A)0 and P(B/A) = 1 then.


If P(A/B) > P(A), then which of the following is correct:-


If A and B are any two events such that P(A) + P(B) – P(A and B) = P(A), then.


Compute P(A/B) If P(B) = 0.5, P(A ∩ B) = 0.32


What will be the value of P(A ∪ B) it 2P(A) = P(B) = `5/13` and P(A/B) = `?/5`


If P(A) = `6/11`, P(B) = `5/11` and P(A ∪ B) = `7/11`, then what will be the value of P(A ∩ B)


Determine P(E/F) if mother father and son line up at random for a tamily pictur. E = son on one end F. Father in middle.


Given that two numbers appearing on throwing two dice are different. Find the probability of the event the sum of numbers on the dice is 4.


A pair of dice is thrown and the sum of the numbers appearing on the dice is observed to be 7. Find the probability that the number 5 has appeared on atleast one die.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×