Advertisements
Advertisements
Question
In a survey of 364 children aged 19 – 36 months, it was found that 91 liked to eat potato chips. If a child is selected at random, the probability that he/she does not like to eat potato chips is ______.
Options
0.25
0.50
0.75
0.80
Solution
In a survey of 364 children aged 19 – 36 months, it was found that 91 liked to eat potato chips. If a child is selected at random, the probability that he/she does not like to eat potato chips is 0.75.
Explanation:
Total number of survey children’s age from 19 – 36 months, n(S) = 364.
In those of them 91 out of them liked to eat potato chips.
∴ Number of children who do not like to eat potato chips, n(E) = 364 – 91 = 273
∴ Probability that he/she does not like to eat potato chips = `(n(E))/(n(S)) = 273/364` = 0.75
Hence, the probability that he/she does not like to eat potato chips is 0.75.
APPEARS IN
RELATED QUESTIONS
In a cricket match, a batswoman hits a boundary 6 times out of 30 balls she plays. Find the probability that she did not hit a boundary.
In a particular section of Class IX, 40 students were asked about the months of their birth and the following graph was prepared for the data so obtained:-
Find the probability that a student of the class was born in August.
In a cricket match, a batsman hits a boundary 6 times out of 30 balls he plays.
(i) he hits boundary
(ii) he does not hit a boundary.
A company selected 2400 families at random and survey them to determine a relationship between income level and the number of vehicles in a home. The information gathered is listed in the table below:
Monthly income: (in Rs) |
Vehicles per family | |||
0 | 1 | 2 | Above 2 | |
Less than 7000 7000-10000 10000-13000 13000-16000 16000 or more |
10 0 1 2 1 |
160 305 535 469 579 |
25 27 29 29 82 |
0 2 1 25 88 |
If a family is chosen, find the probability that family is:
(i) earning Rs10000-13000 per month and owning exactly 2 vehicles.
(ii) earning Rs 16000 or more per month and owning exactly 1 vehicle.
(iii) earning less than Rs 7000 per month and does not own any vehicle.
(iv) earning Rs 13000-16000 per month and owning more than 2 vehicle.
(v) owning not more than 1 vehicle
(vi) owning at least one vehicle.
The probability of a certain event is
A dice is rolled 600 times and the occurrence of the outcomes 1, 2, 3, 4, 5 and 6 are given below:
Outcome | 1 | 2 | 3 | 4 | 5 | 6 |
Frequency | 200 | 30 | 120 | 100 | 50 | 100 |
The probability of getting a prime number is
A company selected 4000 households at random and surveyed them to find out a relationship between income level and the number of television sets in a home. The information so obtained is listed in the following table:
Monthly income (in Rs) |
Number of Television/household | |||
0 | 1 | 2 | Above 2 | |
< 10000 | 20 | 80 | 10 | 0 |
10000 – 14999 | 10 | 240 | 60 | 0 |
15000 – 19999 | 0 | 380 | 120 | 30 |
20000 – 24999 | 0 | 520 | 370 | 80 |
25000 and above | 0 | 1100 | 760 | 220 |
Find the probability of a household earning Rs 25000 and more per year and owning 2 televisions.
Two dice are thrown simultaneously 500 times. Each time the sum of two numbers appearing on their tops is noted and recorded as given in the following table:
Sum | Frequency |
2 | 14 |
3 | 30 |
4 | 42 |
5 | 55 |
6 | 72 |
7 | 75 |
8 | 70 |
9 | 53 |
10 | 46 |
11 | 28 |
12 | 15 |
If the dice are thrown once more, what is the probability of getting a sum
- 3?
- more than 10?
- less than or equal to 5?
- between 8 and 12?
Over the past 200 working days, the number of defective parts produced by a machine is given in the following table:
Number of defective parts |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
Days | 50 | 32 | 22 | 18 | 12 | 12 | 10 | 10 | 10 | 8 | 6 | 6 | 2 | 2 |
Determine the probability that tomorrow’s output will have atleast one defective part
Over the past 200 working days, the number of defective parts produced by a machine is given in the following table:
Number of defective parts |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
Days | 50 | 32 | 22 | 18 | 12 | 12 | 10 | 10 | 10 | 8 | 6 | 6 | 2 | 2 |
Determine the probability that tomorrow’s output will have more than 13 defective parts