Advertisements
Advertisements
Question
In an A.P., if the first term is 22, the common difference is −4 and the sum to n terms is 64, find n.
Solution
In the given problem, we need to find the number of terms of an A.P. Let us take the number of terms as n.
Here, we are given that,
a = 22
d = -4
S_n= 6
So, as we know the formula for the sum of n terms of an A.P. is given by,
`S_n = n/2 [2a + (n - 1)d]`
Where; a = first term for the given A.P.
d = common difference of the given A.P.
n = number of terms
So, using the formula we get,
`S_n= n/2 [2(22) + (n - 1)(-4)]`
`64 = n/2[44 - 4n + 4]`
64(2) = n(48 - 4n)
`128 = 48n - 4n^2`
Further rearranging the terms, we get a quadratic equation,
`4n^2 - 48n + 128 = 0`
On taking 4 common we get
`n^2 - 12n + 32 = 0`
Further, on solving the equation for n by splitting the middle term, we get,
`n^2 - 12n + 32 = 0`
`n^2 - 8n -4n + 32 = 0`
n(n - 8) - 4(n - 8) = 0
(n - 8)(n - 4) = 0
So, we get,
(n - 8) = 0
n = 8
Also
(n - 4) = 0
n = 4
Therefore n = 4 or 8
APPEARS IN
RELATED QUESTIONS
If the sum of the first n terms of an A.P. is `1/2`(3n2 +7n), then find its nth term. Hence write its 20th term.
Find the sum of all odd numbers between 100 and 200.
Find the 6th term form the end of the AP 17, 14, 11, ……, (-40).
If (3y – 1), (3y + 5) and (5y + 1) are three consecutive terms of an AP then find the value of y.
Kargil’s temperature was recorded in a week from Monday to Saturday. All readings were in A.P. The sum of temperatures of Monday and Saturday was 5°C more than sum of temperatures of Tuesday and Saturday. If temperature of Wednesday was –30° celsius then find the temperature on the other five days.
Which term of the sequence 114, 109, 104, ... is the first negative term?
Q.2
Write the formula of the sum of first n terms for an A.P.
What is the sum of an odd numbers between 1 to 50?
Which term of the Arithmetic Progression (A.P.) 15, 30, 45, 60...... is 300?
Hence find the sum of all the terms of the Arithmetic Progression (A.P.)