English

In the given figure, seg PS is the median of ∆PQR and PT ⊥ QR. Prove that, PQ2 = PS2 − QR × ST + QR(QR2)2 - Geometry Mathematics 2

Advertisements
Advertisements

Question

In the given figure, seg PS is the median of ∆PQR and PT ⊥ QR. Prove that, 

PQ2 = PS2 − QR × ST + `(("QR")/2)^2`

Sum

Solution

Seg PS is the median of ∆PQR   ...(Given)

∴ QS = SR = `1/2`QR   ...(1) [S is the midpoint of side QR]

In ∆PTS, ∠PTS = 90°   ...(Given)

∴ by Pythagoras theorem,

PS2 = PT2 + TS2   ...(2)

In ∆PTQ, ∠PTQ = 90°   ...(Given)

∴ by Pythagoras theorem,

PQ2 = PT2 + TQ2

∴ PQ2 = PT2 + (QS − TS)2   ...(Q - T - S)

∴ PQ2 = PT2 + QS2 − 2QS × TS + TS2   ...[(a − b)2 = a2 − 2ab + b2]

∴ PQ2 = (PT2 + TS2) − 2QS × TS + QS2

∴ PQ2 = PS2 − 2`(("QR")/2)` × TS + `(("QR")/2)^2`   ...[From (1) and (2)]

∴ PQ2 = PS2 − QR × ST + `(("QR")/2)^2`

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Pythagoras Theorem - Practice Set 2.2 [Page 43]

APPEARS IN

Balbharati Geometry (Mathematics 2) [English] 10 Standard SSC Maharashtra State Board
Chapter 2 Pythagoras Theorem
Practice Set 2.2 | Q 3. (2) | Page 43
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×