Advertisements
Advertisements
Question
In ∆ABC, point M is the midpoint of side BC. If, AB2 + AC2 = 290 cm2, AM = 8 cm, find BC.
Solution
In ∆ABC, point M is the midpoint of side BC.
AB2 + AC2 = 2AM2 + 2BM2 ...[by Apollonius theorem]
290 = 2 (8)2 + 2BM2
290 = 2 (64) + 2BM2
290 = 128 + 2BM2
2BM2 = 290 - 128
2BM2 = 162
BM2 = 81
BM = `sqrt81`
BM = 9 cm
Point M is the midpoint of BC
∴ BC = 2BM = 2 × 9
∴ BC = 18 cm.
RELATED QUESTIONS
In the given figure, seg PS is the median of ∆PQR and PT ⊥ QR. Prove that,
PR2 = PS2 + QR × ST + `("QR"/2)^2`
Out of the following, which is the Pythagorean triplet?
Some question and their alternative answer are given.
In a right-angled triangle, if sum of the squares of the sides making right angle is 169 then what is the length of the hypotenuse?
Some question and their alternative answer are given. Select the correct alternative.
Find perimeter of a square if its diagonal is \[10\sqrt{2}\]
Some question and their alternative answer are given. Select the correct alternative.
In ∆ABC, AB = \[6\sqrt{3}\] cm, AC = 12 cm, BC = 6 cm. Find measure of ∠A.
Do sides 7 cm, 24 cm, 25 cm form a right angled triangle ? Give reason
A side of an isosceles right angled triangle is x. Find its hypotenuse.
In ∆RST, ∠S = 90°, ∠T = 30°, RT = 12 cm then find RS and ST.
Sum of the squares of adjacent sides of a parallelogram is 130 sq.cm and length of one of its diagonals is 14 cm. Find the length of the other diagonal.
Seg PM is a median of ∆PQR. If PQ = 40, PR = 42 and PM = 29, find QR.
Seg AM is a median of ∆ABC. If AB = 22, AC = 34, BC = 24, find AM
If hypotenuse of a right angled triangle is 5 cm, find the radius of
the circle passing through all vertices of the triangle.
Choose the correct alternative:
Out of the following which is a Pythagorean triplet?
In ΔPQR, seg PM is a median, PM = 9 and PQ2 + PR2 = 290. Find the length of QR.
In ΔABC, seg AP is a median. If BC = 18, AB2 + AC2 = 260, then find the length of AP.
Choose the correct alternative:
Out of given triplets, which is not a Pythagoras triplet?
"The diagonals bisect each other at right angles." In which of the following quadrilaterals is the given property observed?
In the given figure, triangle ABC is a right-angled at B. D is the mid-point of side BC. Prove that AC2 = 4AD2 – 3AB2.