Advertisements
Advertisements
Question
It is known that, in a certain area of a large city, the average number of rats per bungalow is five. Assuming that the number of rats follows Poisson distribution, find the probability that a randomly selected bungalow has more than 5 rats inclusive. Given e-5 = 0.0067.
Solution
Let X denote the number of rats per bungalow.
Given, m = 5 and e–5 = 0.0067
∴ X ~ P(m) ≡ X ~ P(5)
The p.m.f. of X is given by
P(X = x) = `("e"^-"m" "m"^x)/(x!)`
∴ P(X = x) = `("e"^-5*(5)^x)/(x!), x` = 0, 1, ..., 5
P(more than five rats)
= P(X > 5)
= 1 – P(X ≤ 5)
= 1 – P[X = 0 or X = 1 or X = 2 or X = 3 or X = 4 or X = 5]
= 1 – [P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P (X = 4) + P(X = 5)]
= `1 - [("e"^-5 (5)^0)/(0!) + ("e"^-5(5)^1)/(1!) + ("e"^-5 (5)^2)/(2!) + ("e"^-5 (5)^3)/(3!) + ("e"^-5 (5)^4)/(4!) + ("e"^-5(5)^5)/(5!)]`
= `1 - ["e"^-5 (5^0/(0!) + 5^1/(1!) + 5^2/(2!) + 5^3/(3!) + 5^4/(4!) + 5^5/(5!))]`
= `1 - ["e"^-5 (1/1 + 5/1 + 25/2 + 125/6 + 625/24 + 3125/120)]`
= 1 – [e–5 (1 + 5 + 12.5 + 20.83 + 26.04 + 26.04)]
= 1 – [0.0067 (91.417)]
= 1 – 0.6125
= 0.3875
RELATED QUESTIONS
If X has Poisson distribution with parameter m = 1, find P[X ≤ 1] [Use `e^-1 = 0.367879`]
If X has a Poisson distribution with variance 2, find P (X = 4)
[Use e-2 = 0.1353]
If X has a Poisson distribution with variance 2, find P(X ≤ 4)
[Use e-2 = 0.1353]
If X has a Poisson distribution with variance 2, find
Mean of X [Use e-2 = 0.1353]
If X~P(0.5), then find P(X = 3) given e−0.5 = 0.6065.
If X has Poisson distribution with parameter m and P(X = 2) = P(X = 3), then find P(X ≥ 2). Use e−3 = 0.0497
The number of complaints which a bank manager receives per day follows a Poisson distribution with parameter m = 4. Find the probability that the manager receives only two complaints on a given day
The number of complaints which a bank manager receives per day follows a Poisson distribution with parameter m = 4. Find the probability that the manager receives a) only two complaints on a given day, b) at most two complaints on a given day. Use e−4 = 0.0183.
A car firm has 2 cars, which are hired out day by day. The number of cars hired on a day follows Poisson distribution with mean 1.5. Find the probability that (i) no car is used on a given day, (ii) some demand is refused on a given day, given e−1.5 = 0.2231.
It is known that, in a certain area of a large city, the average number of rats per bungalow is five. Assuming that the number of rats follows Poisson distribution, find the probability that a randomly selected bungalow has exactly 5 rats inclusive. Given e-5 = 0.0067.
It is known that, in a certain area of a large city, the average number of rats per bungalow is five. Assuming that the number of rats follows Poisson distribution, find the probability that a randomly selected bungalow has between 5 and 7 rats inclusive. Given e−5 = 0.0067.
Solve the following problem :
If X follows Poisson distribution with parameter m such that
`("P"("X" = x + 1))/("P"("X" = x)) = (2)/(x + 1)`
Find mean and variance of X.
X : is number obtained on upper most face when a fair die is thrown then E(X) = ______
The expected value of the sum of two numbers obtained when two fair dice are rolled is ______.
Choose the correct alternative:
For the Poisson distribution ______
State whether the following statement is True or False:
X is the number obtained on upper most face when a die is thrown, then E(x) = 3.5
State whether the following statement is True or False:
A discrete random variable X is said to follow the Poisson distribution with parameter m ≥ 0 if its p.m.f. is given by P(X = x) = `("e"^(-"m")"m"^"x")/"x"`, x = 0, 1, 2, .....
State whether the following statement is True or False:
If n is very large and p is very small then X follows Poisson distribution with n = mp
The probability that a bomb will hit the target is 0.8. Using the following activity, find the probability that, out of 5 bombs, exactly 2 will miss the target
Solution: Let p = probability that bomb miss the target
∴ q = `square`, p = `square`, n = 5.
X ~ B`(5, square)`, P(x) = `""^"n""C"_x"P"^x"q"^("n" - x)`
P(X = 2) = `""^5"C"_2 square = square`
State whether the following statement is true or false:
lf X ∼ P(m) with P(X = 1) = P(X = 2) then m = 1.
If X has Poisson distribution with parameter m and P(X = 2) = P(X = 3), then find P(X ≥ 2). Use e–3 = 0.0497.
P[X = x] = `square`
Since P[X = 2] = P[X = 3]
`square` = `square`
`m^2/2 = m^3/6`
∴ m = `square`
Now, P[X ≥ 2] = 1 – P[x < 2]
= 1 – {P[X = 0] + P[X = 1]
= `1 - {square/(0!) + square/(1!)}`
= 1 – e–3[1 + 3]
= 1 – `square` = `square`
In a town, 10 accidents take place in the span of 50 days. Assuming that the number of accidents follows Poisson distribution, find the probability that there will be 3 or more accidents on a day.
(Given that e-0.2 = 0.8187)