English

Solve the following problem : If X follows Poisson distribution with parameter m such that P(X=x+1)P(X=x)=2x+1 Find mean and variance of X. - Mathematics and Statistics

Advertisements
Advertisements

Question

Solve the following problem :

If X follows Poisson distribution with parameter m such that
`("P"("X" = x + 1))/("P"("X" = x)) = (2)/(x + 1)`
Find mean and variance of X.

Sum

Solution

Given, X ~ P(m) and `("P"("X" = x + 1))/("P"("X" = x)) = (2)/(x + 1)`

The p.m.f. of X is given by

P(X = x) = `("e"^(-"m")"m"^x)/(x!)`

∴ According to the given condition, we get

`(("e"^(-"m")"m"^(x + 1))/((x + 1)!))/(("e"^(-"m")"m"^x)/(x!)) = (2)/(x + 1)`

∴ `("e"^(-"m") xx "m"^x xx "m")/((x + 1) xx x!) xx (x!)/("e"^(-"m") xx "m"^x) = (2)/(x + 1)`

∴ `"m"/(x + 1) = (2)/(x + 1)`

∴ m = 2
∴ Mean = Variance = m = 2.

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Probability Distributions - Part II [Page 157]

APPEARS IN

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

The number of complaints which a bank manager receives per day is a Poisson random variable with parameter m = 4. Find the probability that the manager will receive -

(a) only two complaints on any given day.

(b) at most two complaints on any given day

[Use e-4 =0.0183]


 If a random variable X follows Poisson distribution such that P(X = l) =P(X = 2), then find P(X ≥ 1).  [Use e-2 = 0.1353] 


 If X has Poisson distribution with parameter m = 1, find P[X ≤ 1]  [Use `e^-1 = 0.367879`]


If X has a Poisson distribution with variance 2, find P (X = 4) 

[Use e-2 = 0.1353] 


If X has a Poisson distribution with variance 2, find P(X ≤ 4) 

[Use e-2 = 0.1353] 


If X has a Poisson distribution with variance 2, find 

Mean of X [Use e-2 = 0.1353] 


If X has Poisson distribution with m = 1, then find P(X ≤ 1) given e−1 = 0.3678


If X has Poisson distribution with parameter m and P(X = 2) = P(X = 3), then find P(X ≥ 2). Use e−3 = 0.0497


The number of complaints which a bank manager receives per day follows a Poisson distribution with parameter m = 4. Find the probability that the manager receives only two complaints on a given day


A car firm has 2 cars, which are hired out day by day. The number of cars hired on a day follows Poisson distribution with mean 1.5. Find the probability that (i) no car is used on a given day, (ii) some demand is refused on a given day, given e−1.5 = 0.2231.


It is known that, in a certain area of a large city, the average number of rats per bungalow is five. Assuming that the number of rats follows Poisson distribution, find the probability that a randomly selected bungalow has exactly 5 rats inclusive. Given e-5  = 0.0067.


It is known that, in a certain area of a large city, the average number of rats per bungalow is five. Assuming that the number of rats follows Poisson distribution, find the probability that a randomly selected bungalow has more than 5 rats inclusive. Given e-5  = 0.0067.


It is known that, in a certain area of a large city, the average number of rats per bungalow is five. Assuming that the number of rats follows Poisson distribution, find the probability that a randomly selected bungalow has between 5 and 7 rats inclusive. Given e−5 = 0.0067.


If E(X) = m and Var (X) = m then X follows ______.


X : is number obtained on upper most face when a fair die is thrown then E(X) = ______


The expected value of the sum of two numbers obtained when two fair dice are rolled is ______.


State whether the following statement is True or False:  

A discrete random variable X is said to follow the Poisson distribution with parameter m ≥ 0 if its p.m.f. is given by P(X = x) = `("e"^(-"m")"m"^"x")/"x"`, x = 0, 1, 2, .....


State whether the following statement is True or False:

If n is very large and p is very small then X follows Poisson distribution with n = mp


The probability that a bomb will hit the target is 0.8. Using the following activity, find the probability that, out of 5 bombs, exactly 2 will miss the target

Solution: Let p = probability that bomb miss the target

∴ q = `square`, p = `square`, n = 5.

X ~ B`(5, square)`, P(x) = `""^"n""C"_x"P"^x"q"^("n" - x)`

P(X = 2) =  `""^5"C"_2  square = square`


If X follows Poisson distribution such that P(X = 1) = 0.4 and P(X = 2) = 0.2, using the following activity find the value of m.

Solution: X : Follows Poisson distribution

∴ P(X) = `("e"^-"m" "m"^x)/(x!)`, P(X = 1) = 0.4 and P(X = 2) = 0.2

∴ P(X = 1) = `square` P(X = 2).

`("e"^-"m" "m"^x)/(1!) = square ("e"^-"m" "m"^2)/(2!)`,

`"e"^-"m" = square  "e"^-"m" "m"/2`, m ≠ 0

∴ m = `square`


State whether the following statement is true or false:

lf X ∼ P(m) with P(X = 1) = P(X = 2) then m = 1.


If X – P(m) with P(X = 1) = P(X = 2), then find the mean and P(X = 2) given that e–2 = 0.1353

Solution: Since P(X = 1) = P(X = 2)

`(e^-mm^1)/(1!) = square`

∴ m = `square`

∴ mean = `square` = `square`

Then P(X = 2) = `square` = `square`


In a town, 10 accidents take place in the span of 50 days. Assuming that the number of accidents follows Poisson distribution, find the probability that there will be 3 or more accidents on a day.

(Given that e-0.2 = 0.8187)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×