Advertisements
Advertisements
Question
ज्ञात कीजिए कि चर y परिमेय संख्या निरूपित करता है या अपरिमेय संख्या।
Solution
y2 = 9
हल करने पर, हमें प्राप्त होता है।
⇒ y = ± 3
अतः, y एक परिमेय संख्या है।
APPEARS IN
RELATED QUESTIONS
आपको याद हो कि π को एक वृत्त की परिधि (मान लीजिए c) और उसके व्यास (मान लीजिए d) के अनुपात से परिभाषित किया जाता है, अर्थात् π = `c/d` है। यह इस तथ्य का अंतर्विरोध करता हुआ प्रतीत होता है कि π अपरिमेय है। इस अंतर्विरोध का निराकरण आप किस प्रकार करेंगे?
ज्ञात कीजिए कि चर z परिमेय संख्या निरूपित करता है या अपरिमेय संख्या।
z2 = 0.04
निम्नलिखित को `p/q` के रूप में व्यक्त कीजिए, जहाँ p और q पूर्णांक हैं तथा q ≠ 0 है :
`0.bar001`
निम्नलिखित के हर का परिमेयीकरण कीजिए :
`sqrt(40)/sqrt(3)`
निम्नलिखित के हर का परिमेयीकरण कीजिए :
`(4sqrt(3) + 5sqrt(2))/(sqrt(48) + sqrt(18))`
निम्नलिखित में हर का परिमेयीकरण कीजिए और फिर `sqrt(2) = 1.414, sqrt(3) = 1.732` और `sqrt(5) = 2.236` लेते हुए तीन दशमलव स्थानों तक का मान ज्ञात कीजिए।
`(sqrt(10) - sqrt(5))/2`
निम्नलिखित में हर का परिमेयीकरण कीजिए और फिर `sqrt(2) = 1.414, sqrt(3) = 1.732` और `sqrt(5) = 2.236` लेते हुए तीन दशमलव स्थानों तक का मान ज्ञात कीजिए।
`1/(sqrt(3) + sqrt(2))`
सरल कीजिए :
`(9^(1/3) xx 27^(-1/2))/(3^(1/6) xx 3^(- 2/3))`
यदि `sqrt(2) = 1.414, sqrt(3) = 1.732` हो, तो `4/(3sqrt(3) - 2sqrt(2)) + 3/(3sqrt(3) + 2sqrt(2))` का मान ज्ञात कीजिए।
यदि `x = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2))` और `y = (sqrt(3) - sqrt(2))/(sqrt(3) + sqrt(2))` है, तो x2 + y2 का मान ज्ञात कीजिए।