Advertisements
Advertisements
Question
सरल कीजिए :
`(9^(1/3) xx 27^(-1/2))/(3^(1/6) xx 3^(- 2/3))`
Solution
`(9^(1/3) xx 27^(-1/2))/(3^(1/6) xx 3^(- 2/3)) = ((3^2)^(1/3) xx (3^3)^(-1/2))/(3^(1/6) xx 3^(- 2/3))` ...[∵ (am)n = amn]
= `(3^(2/3) xx 3^(-3/2))/(3^(1/6) xx 3^(-2/3))` ...[∵ am × an = am + n]
= `(3^(2/3 - 3/2))/(3^(1/6 - 2/3))`
= `(3^((4 - 9)/6))/(3^((1 - 4)/6))` ...`[∵ a^m/a^n = a^(m - n)]`
= `(3^(- 5/6))/(3^(- 3/6)`
= `3^(- 5/6 + 3/6)`
= `3^(-2/6)`
= `3^(- 1/3)`
APPEARS IN
RELATED QUESTIONS
संख्या रेखा पर `sqrt9.3` को निरूपित कीजिए।
ज्ञात कीजिए कि चर x परिमेय संख्या निरूपित करता है या अपरिमेय संख्या।
x2 = 5
निम्नलिखित के बीच में तीन परिमेय संख्याएँ ज्ञात कीजिए :
`5/7` और `6/7`
निम्नलिखित के बीच में एक परिमेय संख्या और एक अपरिमेय संख्या प्रविष्ट कीजिए :
`sqrt(2)` और `sqrt(3)`
निम्नलिखित के बीच में एक परिमेय संख्या और एक अपरिमेय संख्या प्रविष्ट कीजिए :
3.623623 और 0.484848
निम्नलिखित के हर का परिमेयीकरण कीजिए :
`sqrt(6)/(sqrt(2) + sqrt(3))`
निम्नलिखित के हर का परिमेयीकरण कीजिए :
`(4sqrt(3) + 5sqrt(2))/(sqrt(48) + sqrt(18))`
निम्नलिखित में a और b के मान ज्ञात कीजिए :
`(sqrt(2) + sqrt(3))/(3sqrt(2) - 2sqrt(3)) = 2 - bsqrt(6)`
निम्नलिखित में हर का परिमेयीकरण कीजिए और फिर `sqrt(2) = 1.414, sqrt(3) = 1.732` और `sqrt(5) = 2.236` लेते हुए तीन दशमलव स्थानों तक का मान ज्ञात कीजिए।
`sqrt(2)/(2 + sqrt(2)`
सरल कीजिए :
`(8^(1/3) xx 16^(1/3))/(32^(- 1/3))`