English

Let A = R – {5} and B = R – {1}. Consider the function f : A → B, defined by f(x)=x-3x-5. Show that f is one-one and onto. - Mathematics

Advertisements
Advertisements

Question

Let A = R – {5} and B = R – {1}. Consider the function f : A → B, defined by `f(x) = (x-3)/(x-5)`. Show that f is one-one and onto.

Sum

Solution

Given, A = R − {5}, B = R − {1}

f: A → B

`f(x) = (x-3)/(x-5)`

for f is one-one

Let x1, x2 ∈ R

f(x1) = f(x2)

`(x_1-3)/(x_1-5) = (x_2-3)/(x_2-5)`

(x1 − 3) (x2 − 5) = (x2 − 3) (x1 − 5)

x1x2 − 5x1 − 3x2 + 15 = x1x2 − 5x2 − 3x1 + 15

−5x1 + 3x1 = −5x2 + 3x2

−2x1 = −2x2

∴ x1 = x2

f is one-one. 
For if is onto

Let y be any element of R

y = f(x)

⇒ `y = (x-3)/(x-5)`

⇒ y(x − 5) = x − 3

⇒ yx − 5y = x − 3

⇒ yx − x = 5y − 3

⇒ `x = (5y-3)/(y-1)`

`f(x) = (x-3)/(x-5)`

`f((5y-3)/(y-1))= ((5y-3)/(y-1) - 3)/((5y-3)/(y-1) - 5)`

⇒ `f((5y-3)/(y-1)) = ((5y-3-3y+3)/(y-1))/((5y-3-5y+5)/(y-1))`

`f ((5y-3)/(y-1)) = (2y)/2 = y`

f is onto

shaalaa.com
  Is there an error in this question or solution?
2023-2024 (February) Outside Delhi Set - 1
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×