Advertisements
Advertisements
Question
Let A = R – {5} and B = R – {1}. Consider the function f : A → B, defined by `f(x) = (x-3)/(x-5)`. Show that f is one-one and onto.
Sum
Solution
Given, A = R − {5}, B = R − {1}
f: A → B
`f(x) = (x-3)/(x-5)`
for f is one-one
Let x1, x2 ∈ R
f(x1) = f(x2)
`(x_1-3)/(x_1-5) = (x_2-3)/(x_2-5)`
(x1 − 3) (x2 − 5) = (x2 − 3) (x1 − 5)
x1x2 − 5x1 − 3x2 + 15 = x1x2 − 5x2 − 3x1 + 15
−5x1 + 3x1 = −5x2 + 3x2
−2x1 = −2x2
∴ x1 = x2
f is one-one.
For if is onto
Let y be any element of R
y = f(x)
⇒ `y = (x-3)/(x-5)`
⇒ y(x − 5) = x − 3
⇒ yx − 5y = x − 3
⇒ yx − x = 5y − 3
⇒ `x = (5y-3)/(y-1)`
`f(x) = (x-3)/(x-5)`
`f((5y-3)/(y-1))= ((5y-3)/(y-1) - 3)/((5y-3)/(y-1) - 5)`
⇒ `f((5y-3)/(y-1)) = ((5y-3-3y+3)/(y-1))/((5y-3-5y+5)/(y-1))`
`f ((5y-3)/(y-1)) = (2y)/2 = y`
f is onto
shaalaa.com
Is there an error in this question or solution?