English

Using integration, find the area bounded by the ellipse 9x2 + 25y2 = 225, the lines x = –2, x = 2, and the X-axis. - Mathematics

Advertisements
Advertisements

Question

Using integration, find the area bounded by the ellipse 9x2 + 25y2 = 225, the lines x = –2, x = 2, and the X-axis.

Sum

Solution

9x2 + 25y2 = 225

`x^2/25 + y^2/9 = 1`

`A = int_-2^2 3/9 sqrt(25-x^2)`

`A = 6/9 int_-2^2 sqrt (25-x^2)`

`A = 6/9 [x/2 sqrt (25-x^2) + 25/2 sin^-1  x/5]_-2^2`

`A = 6/9 [x/2 sqrt (25-2^2) + 25/2 sin^-1  2/5]-[-2/2 sqrt (25-(-2)^2) + 25/2sin^-1  (-2)/5]`

`A = 6/9 [1xxsqrt21 + 25/2 sin^-1  2/5 + sqrt21 + 25/2 sin^-1  2/5]`

`A = 6/9 [2sqrt21 + 25 sin^-1  2/5]`

`A = 12/9 [sqrt21 + 25 sin^-1  2/5]`

shaalaa.com
  Is there an error in this question or solution?
2023-2024 (February) Outside Delhi Set - 1
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×