English
Karnataka Board PUCPUC Science Class 11

Let Cv and Cp Denote the Molar Heat Capacities of an Ideal Gas at Constant Volume and Constant Pressure Respectively. Which of the Following is a Universal Constant? - Physics

Advertisements
Advertisements

Question

Let Cv and Cp denote the molar heat capacities of an ideal gas at constant volume and constant pressure respectively. Which of the following is a universal constant?

Options

  • `("C"_"P")/("C"_"P")`

  • CpCv

  • Cp − Cv

  •  Cp + Cv

MCQ

Solution

 Cp − Cv

For an ideal gas, Cp − Cv = R , where Cv and Cp denote the molar heat capacities of an ideal gas at constant volume and constant pressure, respectively  and R is the gas constant whos value is 8.314 J/K. Therefore, Cp − Cv is a constant. On the other hand, the ratio of these two varies as the atomicity of the gas changes. Also, their sum and product are not constant.

shaalaa.com
Molecular Nature of Matter
  Is there an error in this question or solution?
Chapter 5: Specific Heat Capacities of Gases - MCQ [Page 76]

APPEARS IN

HC Verma Concepts of Physics Vol. 2 [English] Class 11 and 12
Chapter 5 Specific Heat Capacities of Gases
MCQ | Q 4 | Page 76

RELATED QUESTIONS

An air bubble of volume 1.0 cm3 rises from the bottom of a lake 40 m deep at a temperature of 12 °C. To what volume does it grow when it reaches the surface, which is at a temperature of 35 °C?


A gas in equilibrium has uniform density and pressure throughout its volume. This is strictly true only if there are no external influences. A gas column under gravity, for example, does not have the uniform density (and pressure). As you might expect, its density decreases with height. The precise dependence is given by the so-called law of atmospheres

n2 = n1 exp [-mg (h– h1)/ kBT]

Where n2, n1 refer to number density at heights h2 and h1 respectively. Use this relation to derive the equation for sedimentation equilibrium of a suspension in a liquid column:

n2 = n1 exp [-mg NA(ρ - P′) (h2 –h1)/ (ρRT)]

Where ρ is the density of the suspended particle, and ρ’ that of surrounding medium. [NA is Avogadro’s number, and R the universal gas constant.] [Hint: Use Archimedes principle to find the apparent weight of the suspended particle.]


Calculate the mass of 1 cm3 of oxygen kept at STP.


An electric bulb of volume 250 cc was sealed during manufacturing at a pressure of 10−3 mm of mercury at 27°C. Compute the number of air molecules contained in the bulb. Avogadro constant = 6 × 1023 mol−1, density of mercury = 13600 kg m−3 and g = 10 m s−2.

Use R=8.314J K-1 mol-1


The density of an ideal gas is 1.25 × 10−3 g cm−3 at STP. Calculate the molecular weight of the gas.

Use R=8.31J K-1 mol-1


Consider a sample of oxygen at 300 K. Find the average time taken by a molecule to travel a distance equal to the diameter of the earth.

Use R=8.314 JK-1 mol-1


Find the ratio of the mean speed of hydrogen molecules to the mean speed of nitrogen molecules in a sample containing a mixture of the two gases.

Use R = 8.314 JK-1 mol-1


Estimate the number of collisions per second suffered by a molecule in a sample of hydrogen at STP. The mean free path (average distance covered by a molecule between successive collisions) = 1.38 × 105 cm.

Use R = 8.31 JK−1 mol−1


Hydrogen gas is contained in a closed vessel at 1 atm (100 kPa) and 300 K. (a) Calculate the mean speed of the molecules. (b) Suppose the molecules strike the wall with this speed making an average angle of 45° with it. How many molecules strike each square metre of the wall per second?

Use R = 8.31 JK-1 mol-1


A vertical cylinder of height 100 cm contains air at a constant temperature. The top is closed by a frictionless light piston. The atmospheric pressure is equal to 75 cm of mercury. Mercury is slowly poured over the piston. Find the maximum height of the mercury column that can be put on the piston.


The ratio Cp / Cv for a gas is 1.29. What is the degree of freedom of the molecules of this gas?


For a solid with a small expansion coefficient,


  The value of Cp − Cv is 1.00 R for a gas sample in state A and 1.08 R in state B. Let pAand pB denote the pressures and TA and TB denote the temperatures of the states A and B, respectively. It is most likely that


70 calories of heat are required to raise the temperature of 2 mole of an ideal gas at constant pressure from 30° C to 35° C. The amount of heat required to raise the temperature of the same gas through the same range at constant volume is


The figure shows a process on a gas in which pressure and volume both change. The molar heat capacity for this process is C.


The molar heat capacity of oxygen gas at STP is nearly 2.5 R. As the temperature is increased, it gradually increases and approaches 3.5 R. The most appropriate reason for this behaviour is that at high temperatures


One mole of gas expands obeying the relation as shown in the P-V diagram. The maximum temperature in this process is equal to ______.

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×