English
Karnataka Board PUCPUC Science Class 11

An Electric Bulb of Volume 250 Cc Was Sealed During Manufacturing at a Pressure of 10−3 Mm of Mercury at 27°C. Compute the Number of Air Molecules - Physics

Advertisements
Advertisements

Question

An electric bulb of volume 250 cc was sealed during manufacturing at a pressure of 10−3 mm of mercury at 27°C. Compute the number of air molecules contained in the bulb. Avogadro constant = 6 × 1023 mol−1, density of mercury = 13600 kg m−3 and g = 10 m s−2.

Use R=8.314J K-1 mol-1

Sum

Solution

Given:
Volume of electric bulb, V = 250 cc
Temperature at which manufacturing takes place, T = 27  + 273  = 300 K
Height of mercury, h = 10−3 mm
Density of mercury, \[\rho\] 13600 kgm−3
Avogadro constant, N = 6 × 1023 mol−1
Pressure \[\left( P \right)\] is given by 

P = \[\rho gh\]

Using the ideal gas equation, we get

\[PV = nRT\]

\[PV   =   nRT\] 

\[ \Rightarrow n   = \frac{PV}{RT}\] 

\[ \Rightarrow n = \frac{\rho gh V}{RT}\] 

\[ \Rightarrow n   = \frac{{10}^{- 6} \times 13600 \times 10 \times 250 \times {10}^{- 6}}{8 . 314 \times 300}\] 

\[\text { Now,   number  of  molecules }  = nN\] 

\[ = \frac{{10}^{- 6} \times 13600 \times 10 \times 250 \times {10}^{- 6}}{8 . 314 \times 300} \times 6 \times  {10}^{23} \] 

\[ = 8 \times  {10}^{15}   \]

shaalaa.com
Molecular Nature of Matter
  Is there an error in this question or solution?
Chapter 2: Kinetic Theory of Gases - Exercises [Page 34]

APPEARS IN

HC Verma Concepts of Physics Vol. 2 [English] Class 11 and 12
Chapter 2 Kinetic Theory of Gases
Exercises | Q 6 | Page 34

RELATED QUESTIONS

Estimate the fraction of molecular volume to the actual volume occupied by oxygen gas at STP. Take the diameter of an oxygen molecule to be 3Å.


An air bubble of volume 1.0 cm3 rises from the bottom of a lake 40 m deep at a temperature of 12 °C. To what volume does it grow when it reaches the surface, which is at a temperature of 35 °C?


A gas in equilibrium has uniform density and pressure throughout its volume. This is strictly true only if there are no external influences. A gas column under gravity, for example, does not have the uniform density (and pressure). As you might expect, its density decreases with height. The precise dependence is given by the so-called law of atmospheres

n2 = n1 exp [-mg (h– h1)/ kBT]

Where n2, n1 refer to number density at heights h2 and h1 respectively. Use this relation to derive the equation for sedimentation equilibrium of a suspension in a liquid column:

n2 = n1 exp [-mg NA(ρ - P′) (h2 –h1)/ (ρRT)]

Where ρ is the density of the suspended particle, and ρ’ that of surrounding medium. [NA is Avogadro’s number, and R the universal gas constant.] [Hint: Use Archimedes principle to find the apparent weight of the suspended particle.]


Consider a collision between an oxygen molecule and a hydrogen molecule in a mixture of oxygen and hydrogen kept at room temperature. Which of the following are possible?
(a) The kinetic energies of both the molecules increase.
(b) The kinetic energies of both the molecules decrease.
(c) kinetic energy of the oxygen molecule increases and that of the hydrogen molecule decreases.
(d) The kinetic energy of the hydrogen molecule increases and that of the oxygen molecule decreases.


Find the ratio of the mean speed of hydrogen molecules to the mean speed of nitrogen molecules in a sample containing a mixture of the two gases.

Use R = 8.314 JK-1 mol-1


Figure shows a vessel partitioned by a fixed diathermic separator. Different ideal gases are filled in the two parts. The rms speed of the molecules in the left part equals the mean speed of the molecules in the right part. Calculate the ratio of the mass of a molecule in the left part to the mass of a molecule in the right part.


Estimate the number of collisions per second suffered by a molecule in a sample of hydrogen at STP. The mean free path (average distance covered by a molecule between successive collisions) = 1.38 × 105 cm.

Use R = 8.31 JK−1 mol−1


Hydrogen gas is contained in a closed vessel at 1 atm (100 kPa) and 300 K. (a) Calculate the mean speed of the molecules. (b) Suppose the molecules strike the wall with this speed making an average angle of 45° with it. How many molecules strike each square metre of the wall per second?

Use R = 8.31 JK-1 mol-1


A vertical cylinder of height 100 cm contains air at a constant temperature. The top is closed by a frictionless light piston. The atmospheric pressure is equal to 75 cm of mercury. Mercury is slowly poured over the piston. Find the maximum height of the mercury column that can be put on the piston.


For a solid with a small expansion coefficient,


  The value of Cp − Cv is 1.00 R for a gas sample in state A and 1.08 R in state B. Let pAand pB denote the pressures and TA and TB denote the temperatures of the states A and B, respectively. It is most likely that


The molar heat capacity for the process shown in the figure is


The molar heat capacity of oxygen gas at STP is nearly 2.5 R. As the temperature is increased, it gradually increases and approaches 3.5 R. The most appropriate reason for this behaviour is that at high temperatures


One mole of gas expands obeying the relation as shown in the P-V diagram. The maximum temperature in this process is equal to ______.

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×