English
Karnataka Board PUCPUC Science Class 11

Figure Shows a Vessel Partitioned by a Fixed Diathermic Separator. Different Ideal Gases Are Filled in the Two Parts. - Physics

Advertisements
Advertisements

Question

Figure shows a vessel partitioned by a fixed diathermic separator. Different ideal gases are filled in the two parts. The rms speed of the molecules in the left part equals the mean speed of the molecules in the right part. Calculate the ratio of the mass of a molecule in the left part to the mass of a molecule in the right part.

Sum

Solution

Let the temperature of gas in both the chambers be T.
Let the molar mass of gas in the left chamber and right chamber be M​1 and M2, respectively.
Let mass of gas in the left and right chamber be m1 and m2, respectively. Then,

\[A/Q\] 

\[ v_{rms}  = \sqrt{\frac{3kT}{m_1}} = \sqrt{\frac{8kT}{\pi m_2}}\] 

\[                 \Rightarrow 3 m_1    =   \frac{8 m_2}{3 . 14}\] 

\[                 \Rightarrow \frac{m_2}{m_1} = 1 . 18\]

shaalaa.com
Molecular Nature of Matter
  Is there an error in this question or solution?
Chapter 2: Kinetic Theory of Gases - Exercises [Page 35]

APPEARS IN

HC Verma Concepts of Physics Vol. 2 [English] Class 11 and 12
Chapter 2 Kinetic Theory of Gases
Exercises | Q 20 | Page 35

RELATED QUESTIONS

An air bubble of volume 1.0 cm3 rises from the bottom of a lake 40 m deep at a temperature of 12 °C. To what volume does it grow when it reaches the surface, which is at a temperature of 35 °C?


Consider a mixture of oxygen and hydrogen kept at room temperature. As compared to a hydrogen molecule an oxygen molecule hits the wall


An electric bulb of volume 250 cc was sealed during manufacturing at a pressure of 10−3 mm of mercury at 27°C. Compute the number of air molecules contained in the bulb. Avogadro constant = 6 × 1023 mol−1, density of mercury = 13600 kg m−3 and g = 10 m s−2.

Use R=8.314J K-1 mol-1


Find the ratio of the mean speed of hydrogen molecules to the mean speed of nitrogen molecules in a sample containing a mixture of the two gases.

Use R = 8.314 JK-1 mol-1


Estimate the number of collisions per second suffered by a molecule in a sample of hydrogen at STP. The mean free path (average distance covered by a molecule between successive collisions) = 1.38 × 105 cm.

Use R = 8.31 JK−1 mol−1


Hydrogen gas is contained in a closed vessel at 1 atm (100 kPa) and 300 K. (a) Calculate the mean speed of the molecules. (b) Suppose the molecules strike the wall with this speed making an average angle of 45° with it. How many molecules strike each square metre of the wall per second?

Use R = 8.31 JK-1 mol-1


A vertical cylinder of height 100 cm contains air at a constant temperature. The top is closed by a frictionless light piston. The atmospheric pressure is equal to 75 cm of mercury. Mercury is slowly poured over the piston. Find the maximum height of the mercury column that can be put on the piston.


A uniform tube closed at one end, contains a pellet of mercury 10 cm long. When the tube is kept vertically with the closed-end upward, the length of the air column trapped is 20 cm. Find the length of the air column trapped when the tube is inverted so that the closed-end goes down. Atmospheric pressure = 75 cm of mercury.


The ratio Cp / Cv for a gas is 1.29. What is the degree of freedom of the molecules of this gas?


For a solid with a small expansion coefficient,


  The value of Cp − Cv is 1.00 R for a gas sample in state A and 1.08 R in state B. Let pAand pB denote the pressures and TA and TB denote the temperatures of the states A and B, respectively. It is most likely that


Let Cv and Cp denote the molar heat capacities of an ideal gas at constant volume and constant pressure respectively. Which of the following is a universal constant?


The molar heat capacity for the process shown in the figure is


The molar heat capacity of oxygen gas at STP is nearly 2.5 R. As the temperature is increased, it gradually increases and approaches 3.5 R. The most appropriate reason for this behaviour is that at high temperatures


One mole of gas expands obeying the relation as shown in the P-V diagram. The maximum temperature in this process is equal to ______.

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×