Advertisements
Advertisements
Question
Hydrogen gas is contained in a closed vessel at 1 atm (100 kPa) and 300 K. (a) Calculate the mean speed of the molecules. (b) Suppose the molecules strike the wall with this speed making an average angle of 45° with it. How many molecules strike each square metre of the wall per second?
Use R = 8.31 JK-1 mol-1
Solution
Here,
P = 105 Pa
T = 300 K
For H2
M = 2×10-3 kg
(a) Mean speed is given by
\[ < v > = \sqrt{\frac{8RT}{\pi M}}\]
\[= \sqrt{\frac{8 \times 8.3 \times 300 \times 7}{2 \times {10}^{-3} \times 22}}\]
\[ = 1780 {\text { ms}}^{-1} \]
Let us consider a cubic volume of 1m3.
V = 1 m3
Momentum of 1 molecule normal to the striking surface before collision = mu sin 45°
Momentum of 1 molecule normal to the striking surface after collision = - mu sin 45°
Change in momentum of the molecule = 2mu sin 45° = \[\sqrt{2}mu \]
Change in momentum of n molecules = 2mnu sin 45° = \[\sqrt{2}mnu\]
Let Δt be the time taken in changing the momentum.
Force per unit area due to one molecule \[= \frac{\sqrt{2}mu}{\Delta t} = \frac{\sqrt{2}mu}{\Delta t}\]
Observed pressure due to collision by n molecules\[ =\frac{\sqrt{2}mnu}{\Delta t} = {10}^5\]
\[ n = \frac{\frac{\sqrt{2}mnu}{\Delta t}}{\frac{\sqrt{2}mu}{\Delta t}} = \frac{{10}^5}{\sqrt{2}mu}\]
\[ 6.0 \times {10}^{23} \text { molecules } = 2 \times {10}^{-3} kg\]
\[ 1 \text { molecule } =\frac{2 \times {10}^-{3}}{6 \times {10}^{23}} = 3.3 \times {10}^{-27} kg \]
\[\Rightarrow n = \frac{{10}^5}{\sqrt{2} \times 3.3 \times {10}^{-27} \times 1780} = 1.2 \times {10}^{28}\]
APPEARS IN
RELATED QUESTIONS
Consider a collision between an oxygen molecule and a hydrogen molecule in a mixture of oxygen and hydrogen kept at room temperature. Which of the following are possible?
(a) The kinetic energies of both the molecules increase.
(b) The kinetic energies of both the molecules decrease.
(c) kinetic energy of the oxygen molecule increases and that of the hydrogen molecule decreases.
(d) The kinetic energy of the hydrogen molecule increases and that of the oxygen molecule decreases.
Consider a mixture of oxygen and hydrogen kept at room temperature. As compared to a hydrogen molecule an oxygen molecule hits the wall
An electric bulb of volume 250 cc was sealed during manufacturing at a pressure of 10−3 mm of mercury at 27°C. Compute the number of air molecules contained in the bulb. Avogadro constant = 6 × 1023 mol−1, density of mercury = 13600 kg m−3 and g = 10 m s−2.
Use R=8.314J K-1 mol-1
Consider a sample of oxygen at 300 K. Find the average time taken by a molecule to travel a distance equal to the diameter of the earth.
Use R=8.314 JK-1 mol-1
Figure shows a vessel partitioned by a fixed diathermic separator. Different ideal gases are filled in the two parts. The rms speed of the molecules in the left part equals the mean speed of the molecules in the right part. Calculate the ratio of the mass of a molecule in the left part to the mass of a molecule in the right part.
Estimate the number of collisions per second suffered by a molecule in a sample of hydrogen at STP. The mean free path (average distance covered by a molecule between successive collisions) = 1.38 × 10−5 cm.
Use R = 8.31 JK−1 mol−1
A vertical cylinder of height 100 cm contains air at a constant temperature. The top is closed by a frictionless light piston. The atmospheric pressure is equal to 75 cm of mercury. Mercury is slowly poured over the piston. Find the maximum height of the mercury column that can be put on the piston.
The ratio Cp / Cv for a gas is 1.29. What is the degree of freedom of the molecules of this gas?
Work done by a sample of an ideal gas in a process A is double the work done in another process B. The temperature rises through the same amount in the two processes. If CAand CB be the molar heat capacities for the two processes,
For a solid with a small expansion coefficient,
Let Cv and Cp denote the molar heat capacities of an ideal gas at constant volume and constant pressure respectively. Which of the following is a universal constant?
70 calories of heat are required to raise the temperature of 2 mole of an ideal gas at constant pressure from 30° C to 35° C. The amount of heat required to raise the temperature of the same gas through the same range at constant volume is
The molar heat capacity for the process shown in the figure is
The molar heat capacity of oxygen gas at STP is nearly 2.5 R. As the temperature is increased, it gradually increases and approaches 3.5 R. The most appropriate reason for this behaviour is that at high temperatures
A sample of an ideal gas (γ = 1.5) is compressed adiabatically from a volume of 150 cm3 to 50 cm3. The initial pressure and the initial temperature are 150 kPa and 300 K. Find (a) the number of moles of the gas in the sample (b) the molar heat capacity at constant volume (c) the final pressure and temperature (d) the work done by the gas in the process and (e) the change in internal energy of the gas.
One mole of gas expands obeying the relation as shown in the P-V diagram. The maximum temperature in this process is equal to ______.