हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

An Electric Bulb of Volume 250 Cc Was Sealed During Manufacturing at a Pressure of 10−3 Mm of Mercury at 27°C. Compute the Number of Air Molecules - Physics

Advertisements
Advertisements

प्रश्न

An electric bulb of volume 250 cc was sealed during manufacturing at a pressure of 10−3 mm of mercury at 27°C. Compute the number of air molecules contained in the bulb. Avogadro constant = 6 × 1023 mol−1, density of mercury = 13600 kg m−3 and g = 10 m s−2.

Use R=8.314J K-1 mol-1

योग

उत्तर

Given:
Volume of electric bulb, V = 250 cc
Temperature at which manufacturing takes place, T = 27  + 273  = 300 K
Height of mercury, h = 10−3 mm
Density of mercury, \[\rho\] 13600 kgm−3
Avogadro constant, N = 6 × 1023 mol−1
Pressure \[\left( P \right)\] is given by 

P = \[\rho gh\]

Using the ideal gas equation, we get

\[PV = nRT\]

\[PV   =   nRT\] 

\[ \Rightarrow n   = \frac{PV}{RT}\] 

\[ \Rightarrow n = \frac{\rho gh V}{RT}\] 

\[ \Rightarrow n   = \frac{{10}^{- 6} \times 13600 \times 10 \times 250 \times {10}^{- 6}}{8 . 314 \times 300}\] 

\[\text { Now,   number  of  molecules }  = nN\] 

\[ = \frac{{10}^{- 6} \times 13600 \times 10 \times 250 \times {10}^{- 6}}{8 . 314 \times 300} \times 6 \times  {10}^{23} \] 

\[ = 8 \times  {10}^{15}   \]

shaalaa.com
Molecular Nature of Matter
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Kinetic Theory of Gases - Exercises [पृष्ठ ३४]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
अध्याय 2 Kinetic Theory of Gases
Exercises | Q 6 | पृष्ठ ३४

संबंधित प्रश्न

Estimate the fraction of molecular volume to the actual volume occupied by oxygen gas at STP. Take the diameter of an oxygen molecule to be 3Å.


A gas in equilibrium has uniform density and pressure throughout its volume. This is strictly true only if there are no external influences. A gas column under gravity, for example, does not have the uniform density (and pressure). As you might expect, its density decreases with height. The precise dependence is given by the so-called law of atmospheres

n2 = n1 exp [-mg (h– h1)/ kBT]

Where n2, n1 refer to number density at heights h2 and h1 respectively. Use this relation to derive the equation for sedimentation equilibrium of a suspension in a liquid column:

n2 = n1 exp [-mg NA(ρ - P′) (h2 –h1)/ (ρRT)]

Where ρ is the density of the suspended particle, and ρ’ that of surrounding medium. [NA is Avogadro’s number, and R the universal gas constant.] [Hint: Use Archimedes principle to find the apparent weight of the suspended particle.]


Consider a collision between an oxygen molecule and a hydrogen molecule in a mixture of oxygen and hydrogen kept at room temperature. Which of the following are possible?
(a) The kinetic energies of both the molecules increase.
(b) The kinetic energies of both the molecules decrease.
(c) kinetic energy of the oxygen molecule increases and that of the hydrogen molecule decreases.
(d) The kinetic energy of the hydrogen molecule increases and that of the oxygen molecule decreases.


Consider a mixture of oxygen and hydrogen kept at room temperature. As compared to a hydrogen molecule an oxygen molecule hits the wall


Calculate the mass of 1 cm3 of oxygen kept at STP.


The density of an ideal gas is 1.25 × 10−3 g cm−3 at STP. Calculate the molecular weight of the gas.

Use R=8.31J K-1 mol-1


Estimate the number of collisions per second suffered by a molecule in a sample of hydrogen at STP. The mean free path (average distance covered by a molecule between successive collisions) = 1.38 × 105 cm.

Use R = 8.31 JK−1 mol−1


Hydrogen gas is contained in a closed vessel at 1 atm (100 kPa) and 300 K. (a) Calculate the mean speed of the molecules. (b) Suppose the molecules strike the wall with this speed making an average angle of 45° with it. How many molecules strike each square metre of the wall per second?

Use R = 8.31 JK-1 mol-1


A vertical cylinder of height 100 cm contains air at a constant temperature. The top is closed by a frictionless light piston. The atmospheric pressure is equal to 75 cm of mercury. Mercury is slowly poured over the piston. Find the maximum height of the mercury column that can be put on the piston.


A uniform tube closed at one end, contains a pellet of mercury 10 cm long. When the tube is kept vertically with the closed-end upward, the length of the air column trapped is 20 cm. Find the length of the air column trapped when the tube is inverted so that the closed-end goes down. Atmospheric pressure = 75 cm of mercury.


The ratio Cp / Cv for a gas is 1.29. What is the degree of freedom of the molecules of this gas?


  The value of Cp − Cv is 1.00 R for a gas sample in state A and 1.08 R in state B. Let pAand pB denote the pressures and TA and TB denote the temperatures of the states A and B, respectively. It is most likely that


The figure shows a process on a gas in which pressure and volume both change. The molar heat capacity for this process is C.


The molar heat capacity for the process shown in the figure is


The molar heat capacity of oxygen gas at STP is nearly 2.5 R. As the temperature is increased, it gradually increases and approaches 3.5 R. The most appropriate reason for this behaviour is that at high temperatures


A sample of an ideal gas (γ = 1.5) is compressed adiabatically from a volume of 150 cm3 to 50 cm3. The initial pressure and the initial temperature are 150 kPa and 300 K. Find (a) the number of moles of the gas in the sample (b) the molar heat capacity at constant volume (c) the final pressure and temperature (d) the work done by the gas in the process and (e) the change in internal energy of the gas.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×