Advertisements
Advertisements
Question
Make f the subject of the formula D = `sqrt((("f" + "p")/("f" - "p"))`. Find f, when D = 13 and P = 21.
Solution
D = `sqrt((("f" + "p")/("f" - "p"))`
squaring both sides, we get
⇒ D2 = `(("f" + "p")/("f" - "p"))`
⇒ D2(f - p) = (f + p)
⇒ D2f - D2p = f + p
⇒ D2f - f = p + D2p
⇒ f(D2 - 1) = p(D2 + 1)
⇒ f = `("p"("D"^2 + 1))/(("D"^2 - 1)`
Substituting the values of D = 13 and p = 21
f = `(21(13^&2 + 1))/((13^2 - 1)`
= `(21 xx 170)/(168)`
= 21.25.
APPEARS IN
RELATED QUESTIONS
Make L the subject of formula T = `2pisqrt("L"/"G")`
Make x the subject of formula `"a"x^2/"a"^2 + y^2/"b"^2` = 1
Make a the subject of formula S = `("a"("r"^"n" - 1))/("r" - 1)`
Make V the subject of formula K = `(1)/(2)"MV"^2`
Make R2 the subject of formula R2 = 4π(R12 - R22)
Given: mx + ny = p and y = ax + b. Find x in terms of m, n, p, a and b.
Make x the subject of the formula y = `(1 - x^2)/(1 + x^2)`. Find x, when y = `(1)/(2)`
Make y the subject of the formula `x/"a" + y/"b" `= 1. Find y, when a = 2, b = 8 and x = 5.
Make g the subject of the formula v2 = u2 - 2gh. Find g, when v = 9.8, u = 41.5 and h = 25.4.
Make z the subject of the formula y = `(2z + 1)/(2z - 1)`. If x = `(y + 1)/(y - 1)`, express z in terms of x, and find its value when x = 34.