Advertisements
Advertisements
Question
Mrs. Gupta repays her total loan of Rs. 1,18,000 by paying installments every month. If the installments for the first month is Rs. 1,000 and it increases by Rs. 100 every month, What amount will she pays as the 30th installments of loan? What amount of loan she still has to pay after the 30th installment?
Solution
Total amount of loan = Rs. 1,18,000
First installment = a = Rs. 1000
Increase in installment every month = d = Rs. 100
30th installment = t30
= a + 29d
= 1000 + 29 × 100
= 1000 + 2900
= Rs. 3900
Now, amount paid in 30 installments = S30
= `30/2 [2 xx 1000 + 29 xx 100]`
= 15[2000 + 2900]
= 15 × 4900
= Rs. 73,500
∴ Amount of loan to be paid after the 30th installments
= Rs. (1,18,000 – 73,500)
= Rs. 44,500
APPEARS IN
RELATED QUESTIONS
An A.P. consists of 50 terms of which 3rd term is 12 and the last term is 106. Find the 29th term of the A.P.
200 logs are stacked in the following manner: 20 logs in the bottom row, 19 in the next row, 18 in the row next to it and so on. In how many rows are the 200 logs placed, and how many logs are in the top row?
Find the sum of all odd natural numbers less than 50.
Find where 0 (zero) is a term of the A.P. 40, 37, 34, 31, ..... .
If k, 2k − 1 and 2k + 1 are three consecutive terms of an A.P., the value of k is
Q.17
If ₹ 3900 will have to be repaid in 12 monthly instalments such that each instalment being more than the preceding one by ₹ 10, then find the amount of the first and last instalment
The first term of an AP is –5 and the last term is 45. If the sum of the terms of the AP is 120, then find the number of terms and the common difference.
Yasmeen saves Rs 32 during the first month, Rs 36 in the second month and Rs 40 in the third month. If she continues to save in this manner, in how many months will she save Rs 2000?
The sum of all two digit numbers is ______.