Advertisements
Advertisements
Question
Multiply the monomial by the binomial and find the value for x = −1, y = 0.25 and z = 0.05: z2(x − y)
Solution
To find the product, we will use distributive law as follows:
\[z^2 \left( x - y \right)\]
\[ = z^2 \times x - z^2 \times y\]
\[ = x z^2 - y z^2\]
Substituting x = \[-\] 1, y = 0.25 and z = 0.05 in the result, we get:
\[x z^2 - y z^2 \]
\[ = \left( - 1 \right) \left( 0 . 05 \right)^2 - \left( 0 . 25 \right) \left( 0 . 05 \right)^2 \]
\[ = \left( - 1 \right)\left( 0 . 0025 \right) - \left( 0 . 25 \right)\left( 0 . 0025 \right)\]
\[ = - 0 . 0025 - 0 . 000625\]
\[ = - 0 . 003125\]
APPEARS IN
RELATED QUESTIONS
Multiply the binomials.
(2pq + 3q2) and (3pq − 2q2)
Multiply the binomials.
`(3/4 a^2 + 3b^2) and 4(a^2 - 2/3 b^2)`
Find the Product.
(5 − 2x) (3 + x)
Find the product.
(a2 + b) (a + b2)
Multiply the monomial by the binomial and find the value for x = −1, y = 0.25 and z = 0.05: 15y2(2 − 3x)
Find the product of the following binomial: (2x + y)(2x + y)
Find the product of the following binomial: (a2 + bc)(a2 − bc)
Find the product of the following binomial: \[\left( \frac{4x}{5} - \frac{3y}{4} \right)\left( \frac{4x}{5} + \frac{3y}{4} \right)\]
Using the formula for squaring a binomial, evaluate the following: (102)2
Using the formula for squaring a binomial, evaluate the following: (999)2