Advertisements
Advertisements
Question
Name the type of triangle formed by the points A(–5, 6), B(–4, –2) and C(7, 5).
Solution
To find the type of triangle, first we determine the length of all three sides and see whatever condition of triangle is satisfy by these sides.
Now, using distance formula between two points,
AB = `sqrt((-4 + 5)^2 + (-2 - 6)^2` ...`[∵ d = sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2)]`
= `sqrt((1)^2 + (-8)^2`
= `sqrt(1 + 64)`
= `sqrt(65)`
BC = `sqrt((7 + 4)^2 + (5 + 2)^2`
= `sqrt((11)^2 + (7)^2`
= `sqrt(121 + 49)`
= `sqrt(170)`
And CA = `sqrt((-5 - 7)^2 + (6 - 5)^2`
= `sqrt((-12)^2 + (1)^2`
= `sqrt(144 + 1)`
= `sqrt(145)`
We see that,
AB ≠ BC ≠ CA
And not hold the condition of Pythagoras in a ΔABC.
i.e., (Hypotenuse)2 = (Base)2 + (Perpendicular)2
Hence, the required triangle is scalene because all of its sides are not equal i.e., different to each other.
APPEARS IN
RELATED QUESTIONS
If A(4, 3), B(-1, y) and C(3, 4) are the vertices of a right triangle ABC, right-angled at A, then find the value of y.
If the point A(0, 2) is equidistant from the points B(3, p) and C(p, 5), find p. Also, find the length of AB.
If Q (0, 1) is equidistant from P (5, − 3) and R (x, 6), find the values of x. Also find the distance QR and PR.
Find the distance between the following pair of points:
(a+b, b+c) and (a-b, c-b)
Find the centre of the circle passing through (6, -6), (3, -7) and (3, 3)
If A and B are the points (−6, 7) and (−1, −5) respectively, then the distance
2AB is equal to
Find the value of y for which the distance between the points A (3, −1) and B (11, y) is 10 units.
Find the distance between the following point :
(sec θ , tan θ) and (- tan θ , sec θ)
Find the distance between the following point :
(Sin θ - cosec θ , cos θ - cot θ) and (cos θ - cosec θ , -sin θ - cot θ)
Case Study -2
A hockey field is the playing surface for the game of hockey. Historically, the game was played on natural turf (grass) but nowadays it is predominantly played on an artificial turf.
It is rectangular in shape - 100 yards by 60 yards. Goals consist of two upright posts placed equidistant from the centre of the backline, joined at the top by a horizontal crossbar. The inner edges of the posts must be 3.66 metres (4 yards) apart, and the lower edge of the crossbar must be 2.14 metres (7 feet) above the ground.
Each team plays with 11 players on the field during the game including the goalie. Positions you might play include -
- Forward: As shown by players A, B, C and D.
- Midfielders: As shown by players E, F and G.
- Fullbacks: As shown by players H, I and J.
- Goalie: As shown by player K.
Using the picture of a hockey field below, answer the questions that follow:
If a player P needs to be at equal distances from A and G, such that A, P and G are in straight line, then position of P will be given by ______.