Advertisements
Advertisements
Question
निम्नलिखित आकृति में, X और Y क्रमश : AC और AB के मध्य-बिंदु हैं, QP || BC और CYQ और BXP सरल रेखाएँ हैं। सिद्ध कीजिए कि ar (ABP) = ar (ACQ) हैं।
Solution
दिया गया है - X और Y क्रमश : AC और AB के मध्य-बिंदु हैं। साथ ही, QP || BC और CYQ, BXP सीधी रेखाएँ हैं।
सिद्ध करना है - ar (ΔABP) = ar (ΔACQ)
उपपत्ति - चूँकि X और Y क्रमश : AC और AB के मध्य-बिंदु हैं।
तो, XY || BC
हम जानते हैं कि, एक ही आधार और एक ही समांतर रेखाओं के बीच बने त्रिभुज क्षेत्रफल में बराबर होते हैं।
यहाँ, ΔBYC और ΔBXC एक ही आधार BC और समान समांतर रेखाओं BC और XY के बीच स्थित हैं।
इसलिए, ar (ΔBYC) = ar (ΔBXC)
दोनों ओर से ar (ΔBOC) घटाने पर, हम पाते हैं।
ar (ΔBYC) – ar (ΔBOC) = ar (ΔBXC) – ar (ΔBOC)
=» ar (ΔBOY) = ar (ΔCOX)
दोनों ओर से ar (ΔXOY) घटाने पर, हम पाते हैं।
ar (ΔSOY) + ar (ΔXOY) = ar (ΔCOX) + ar (ΔXOY)
⇒ ar (ΔBYX) = ar (ΔCXY) ...(i)
इसलिए, हम देखते हैं कि चतुर्भुज XYAP और YXAQ एक ही आधार XY पर और समान समांतर रेखाओं XY और PQ के बीच हैं।
ar (XYAP) = ar (YXAQ) ...(ii)
समीकरण (i) और (ii) को जोड़ने पर, हम पाते हैं।
ar (ΔBYX) + ar (XYAP) = ar (ΔCXY) + ar (YXAQ)
⇒ ar (ΔABP) = ar (ΔACQ)
अतः सिद्ध हुआ।
APPEARS IN
RELATED QUESTIONS
P और Q एक समांतर चतुर्भुज ABCD की भुजाओं DC और AD पर स्थित कोई दो बिंदु हैं। दर्शाइए कि ar (APB) = ar (BQC) है।
दी गई आकृति में, ΔABC की माध्यिका AD पर स्थित E कोई बिंदु है। दिखाएँ कि ar (ABE) = ar (ACE) है।
समान्तर चतुर्भुज ABCD की एक भुजा AB को एक बिंदु P तक बढाया गया है | A से होकर CP के समांतर खिंची गई रेखा बढाई गई CB को Q पर मिलती है और फिर समांतर चतुर्भुज PBQR को पूरा किया गया है | दर्शाइए कि ar(ABCD) = ar(PBQR) है |
[संकेत: AC और PQ को मिलाइए अब ar(ACQ) और ar(APQ) कि तुलना कीजिये]
ABCDE एक पंचभुज है| B से होकर AC के समांतर खिंची गई रेखा बढाई गई DC को F पर मिलती है | दर्शाइए कि
(i) ar(ACB) = ar(ACF)
(ii) ar(AEDF) = ar(ABCDE)
दी गई आकृति में, AP || BQ || CR है | सिद्ध कीजिए कि ar(AQC) = ar(PBR) है |
दी गई आकृति में, ar(DRC) = ar(DPC) है और ar(BDP) = ar(ARC) है | दर्शाइए कि दोनों चतुर्भुज ABCD और DCPR समलंब है |
आकृति में, ABCD, DCFE और ABFE समांतर चतुर्भुज हैं। दर्शाइए कि ar (ADE) = ar (BCF) है।
ABCD एक वर्ग है। E और F क्रमश : BC और CD भुजाओं के मध्य-बिंदु हैं। यदि R रेखाखंड EF का मध्य-बिंदु है (आकृति), तो सिद्ध कीजिए कि ar (AER) = ar (AFR) है।
एक त्रिभुज ABC की माध्यिकाएँ BE और CF परस्पर बिंदु G पर प्रतिच्छेद करती हैं। सिद्ध कीजिए कि ∆GBC का क्षेत्रफल चतुर्भुज AFGE के क्षेत्रफल के बराबर हैं।
त्रिभुज ABC में यदि L और M क्रमश : AB और AC भुजाओं पर इस प्रकार स्थित बिंदु हैं कि LM || BC है। सिद्ध कीजिए कि ar (LOB) = ar (MOC) है।